

The Updated Role of Ultrasound in the Assessment of Knee Osteoarthritis

Ehesis

A Thesis Submitted For Partial Fullfilment Of Master Degree In Radiology

By

Nouran Saieed Ahmed Ahmed

M.B.B.Ch, Ain Shams University

Supervised by

Prof. Dr. Khalid Esmat Alaam

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Hazem Ibrahim Abd El Rahman

Lecturer of Radiodiagnosis Faculty of Medicine Ain Shams University

Faculty of medicine
Ain Shams University
2019

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to ATLAM, the most kind and most merciful.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Khalid Esmat Alaam** for his sincere encouragement, constant advise and valuable guidance throughout our work.

Special thanks and gratitude to **Tecturer Dr. Hazem Ibrahim Abd El Rahman** for his supervision and continuous advise during performance of this work.

Finally I thank my professors, for the support and encouragement.

LIST OF CONTENTS

Title Pa	ge No.
LIST OF CONTENTS	I
List of Abbreviations	II
List of Tables	. III
List of Figures	.IV
Abstract	VII
INTRODUCTION	1
AIM OF the WORK	4
REVIEW OF LITERATURE	5
Anatomy of the knee joint	20 27 36 46
Results	
ILLUSTRATIVE CASES	75
DISCUSSION	93
SUMMARY AND CONCLUSION	.12
References	.15
الملخص العربي	1

List of Abbreviations

ACL : Anterior cruciate ligament

ACR : American Collegue of Radiology

BMI : Body mass index

DAMPs : Damage-associated molecular patterns

ECM : Extracellular matrix

EFF : Effusion

F : Femur

FAC : Femoral articular cartilage

GCM : Gastrocnemius muscle

HPF : Hoffa pad of fat

JSN : Joint space narrowing

K&L : Kellgren and Lawrence grade

KOA : Knee osteoarthritis

LCL : Lateral collateral ligament

LFC : Lateral femoral condyle

LM : Lateral meniscus

MCL : Medial collateral ligament

MG : Medial head of Gastrocnemius

MM : Medial meniscus

OA : Osteoarthritis

P : Patella

PCL : Posterior cruciate ligament

PD : Power Doppler

PDUS : Pulsed Doppler ultrasound

PFJ : Patellofemoral joint

PHMM : Posterior horn of medial meniscus

QT : Quadricepis tendon

SH : Synovial hypertrophy

SM : Semimembranosus tendon

TFJ: Tibio-femoral joint.

TT : Tibial tuberosity

List of Tables

Table (1): anatomical structures found in each knee compartment	20
Table (2): Different US findings in knee osteoarthritis	36
Table (3):Demographic, clinical and radiographic data of patients	62
Table (4): Abnormal ultrasound findings in 36 patients and detection by clinical examination	
Table (5): Relationship between synovial hypertrophy and US findings in KOA.	

List of Figures

Fig (1): Diagrammatic representation of the movements planes of the knee	
joint	6
Fig (2): Bony topography of (A) the tibial plateau and (B) the femoral condyle providing screw-home mechanism. C, weight bearing occurs on the tibial eminence and on the central plateau	
Fig (3): ligaments and menisci of the knee	
Fig (4): Anterior view of a right cadaveric knee demonstrating the anterior	
cruciate ligament (ACL) , posterior cruciate ligament (PCL) , and	
lateral meniscal anterior root attachment :LARA	10
Fig (5): Bursae around the knee	
Fig (6): Pad of fats at the anterior knee	
Fig (7): Muscles acting on the knee	
Fig (8): Vascular supply of the knee joint	
Fig (9): Shows the quadriceps tendon (black arrows) runs anteriorly to the	1 /
suprapatellar recess. The S-shaped suprapatellar synovial recess	
(dashed white line) separating the suprapatellar fat pad (1) from the	
prefemoral (2) fat pad	21
Fig (10): Longitudinal US view of the patellar tendon (arrowheads)	21
identified as the large fibrillar structure extending from the inferior	
patella (P)to the tibial tuberosity(TT).HF:Hoffa pad of fat	22
Fig (11): shows the V-shaped hypoechoic cartilage (dashed white line)	22
covering the femoral trochlea. The quadriceps tendon (*) runs	
anteriorly	22
Fig (12): Longitudinal ultrasound scan of the medial collateral	
ligament(black arrows).*: medial meniscus	23
Fig (13): Ultrasound scans show the tibial insertion of the pes anserine	
tendon (arrows).T :tibia	24
Fig (14):shows a thick hyperechoic band that corresponds to the iliotibial	
band (arrowheads). The distal insertion of this structure is the	
Gerdy's tubercle.	25
Fig (15): PD US of popliteal artery :red and veins :blue	26
Fig (16): Schematic representation of the dynamic equilibrium of the	
cartilage remolding	31
Fig (17): Schematic view of the main structures of adegenerated OA joint.	
the articular cartilage is lost or severely thinned, the (subchondral)	
bone is sclerotic, the joint capsule is thickened, and the synovial	
membrane is activated	32
Fig (18): Pathophysiology of knee osteoarthritis. A:Comparison between a	
normal and diseased joint. B Histological pattern of abnormal	
cartilage.	33
Fig (19): X- Ray grading of KOA according to Kellgren and Lawrence	
(1957)	35

List of Figures 🕃

Fig (20): US Grading of femoral articular cartilage (FAC) degeneration,	•
f:femoral condyle	38
Fig (21): US grading of osteophytes f:femoral condyle, t: proximal tibia	40
Fig (22): Medial meniscal protrusion with displacement of medial	
collateral ligament: A. Measuring the protrusion: B	41
Fig (23): PD US of the suprapatellar pouch demonstrating synovial	
hypervascularity	
Fig (24): Mild knee effusion in the supraptellar recess	43
Fig (25): US of Baker's cyst showing its different components (1) the	
base,(2) the neck located between the tendon of the	
semimembranosus (arrow) and the tendon of the medial head of the	
gastrocnemius (arrowhead), and(3) the body of the cyst	44
Fig (26): Medial collateral ligament sprain	45
Fig (27): Probe position for the evaluation of the suprapatellar recess (a).	
The ultrasoundscan (b) shows the S-shaped suprapatellar synovial	
recess (dashed white line)separating the suprapatellar fat pad (1)	
from the prefemoral (2) fat pad. The quadriceps tendon (black	
arrows) runs anteriorly to the recess	47
Fig (28): Probe position for the evaluation of the patellar tendon (a). The	
ultrasound scan (b) shows <i>Arrowheads</i> patellar tendon; <i>arrow</i> ;deep	
infrapatellar bursa <i>Hfp</i> Hoffa fat pad; <i>P</i> patella	49
Fig (29): Probe position for the assessment of the Femoral articular	
cartilage (a). The axial scan (b) shows the V-shaped hypoechoic	
cartilage (<i>Asterisks</i>) covering the femoral trochlea. The quadriceps	
tendon (qt) runs anteriorly	50
Fig (30): Probe position for the evaluation of the medial knee (a) showing	
MM and MCL: arrowhead (b).	51
Fig (31): Probe position for evaluating anteromedial knee (a) showing pes	5 1
anserine tendon (b) T: tibia.	51
Fig (32): Probe position to evaluate the iliotibial band (a). Ultrasound	91
longitudinal plane (b) shows a thick hyperechoic band that	
corresponds to the iliotibial band (arrowheads). The distal insertion	
of this structure is the Gerdy's tubercle	54
Fig (33): US evaluation for Baker cyst.	
Fig (34): Probe position evaluating posterior knee(A) showing PHMM(B)	33
and PCL (C)	56
Fig (35): Sex distribution of the patients group.	
Fig (36): Use of analgesics distribution of the patients group.	
Fig (37): Kellgren and Lawrence grade distribution of the patients group	03
Fig (38): Abnormal ultrasound findings in 36 patients and detection by	<i>(</i> =
clinical examination	
Fig (39): Relationship between synovial hypertrophy and knee effusion	69
Fig (40): Relationship between synovial hypertrophy and FAC	
degeneration	70
Fig (41):Relationship between synovial hypertrophy and meniscal	_
degeneration	70

Tist of Figures 🕃

Fig	(42):	Relationship	between	synovial	hypertrophy	and	meniscal	
	extr	usion		·····				71
Fig	(43): D	Diagnostic US f	inding and	l clinical B				
_		K-ray of the rigi	_		•			
		JS. of the Right						
		K-ray of the left						
_		JS. of the left k						
_		X-ray of the left						
		JS. of the left k						
		X-ray of the left						
_		JS. of the left k						
_		X-ray of the rigi						
_		JS. of the right						
		K-ray of the right						
_		JS. of the right	-					
_		K-ray of the left	v					
_		JS. of the left k						
_		K-ray of the left						
		JS. of the left k						
_		K-ray of the right	-					
_		JS. of the right						
5	(0-).	or the 11511t	mice joint			• • • • • • • • • •		>

Abstract

Background: Osteoarthritis (OA) of the knee is the most common form of knee arthritis and a leading cause of chronic disability.

Objective: The aim of the current study is to reassess the utility of the updated ultrasound in the patients with knee osteoarthritis and outline its clinical application.

Patients and Methods: The studied group included 36 patient 23females and 13 males with their ages ranged between 39 and 58 years (average age 44 years). The patients were referred to US examination fulfilling the ACR clinical criteria for knee OA after orthopedic and /or rheumatologist consultation. The study was performed in Radiodiagnosis department Ain Shams University Hospitals (20 patients) and at one private center (16 patients).

Results: There was a discrepancy between the results obtained by clinical examination and those demonstrated by ultrasonography. Clinical examination detected 22 (61.1%) of our cases. Prevalence of US findings in our cases were femoral articular degeneration in 28 (77.7%) patients, Tibiofemoral osteophytes were seen in 26 patients (72.2%), knee effusion in 22 patients (61.1%),meniscal extrusion in 22 patients (61.1%) meniscal degeneration in 17 patients (47.2%) and synovial hypertrophy in 15 patients (41.6%). Baker's cysts were demonstrated in 14 patients (38.8%) while pes anserine syndrome was demonstrated in 4 cases. Meniscal degeneration and meniscal extrusion were correlated significantly with femoral cartilage degeneration (P<.001). Although knee effusion did not correlate with advanced knee effusion did significantly (P>0.05). Baker's cysts is statistically related to the presence and severity of mensical changes and also related to the degree of femoral articular cartilage degeneration.

Conclusion: US is a valuable technique that can assess soft tissue structures within the knee and their involvement in the osteoarthritic process .US enables in guiding and monitoring therapy through detection of knee structural damage.

Keywords:

Osteoarthritis, Ultrasound, Osteophytes, Synovial hypertrophyhypertrophy.

INTRODUCTION

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of chronic disability, in large part due to lower extremity involvement. The knee is one of the most common joints involved in OA. The prevalence of symptomatic knee OA is reported to be as high as 16% in the elderly population (Alves et al;2016).

Plain radiography is the imaging modality most frequently used for assessing joint involvement. However, the articular cartilage cannot be shown by plain radiographs. In addition, this technique lacks the ability to visualize synovial recesses, menisci and other soft tissues involved in OA (Bevers et al;2014).

Although the cornerstones of imaging evaluation of the knee is magnetic resonance (MR) imaging, ultrasonography (US) is less expensive than MR imaging, easily available, and of comparable accuracy in the evaluation of certain pathologic conditions of the knee (Vohra et al;2011).

The benefits of US include portability, low cost, high spatial resolution, dynamic imaging, and ability to guide percutaneous interventions when indicated. US also allows direct patient contact, facilitating immediate clinical correlation and the ability to compare with the contralateral knee. US evaluation of the knee

can be targeted to a specific region on the basis of the complaint or be a comprehensive review (Oo et al;2017).

Because of recent improvement in technology, ultrasound has the ability to demonstrate and assess the minimal structural abnormalities, which involve the pathophysiology and progression of OA, such as synovial tissue, bony cortex, and other soft tissue (**Ekim;2018**).

Nowadays, ultrasonography is a promising technique for assessing soft tissue abnormalities such as joint effusion, synovial hypertrophy, Baker cyst. Ultrasonography not only possesses diagnostic potential in knee OA but also reveals long-term predictability for disease progress as imaging biomarker. Ultrasonography has also been proven as a useful tool in guiding therapeutic interventions and monitoring treatment effectiveness. (Oo and Bo; 2016).

Inflammation plays a major role in arthritic disease; however, inflammatory events have also been linked to OA, and synovial hypertrophy is very common and seems to be related to pain and progression of structural damage (**Lee and Chow;2007**).

Color Doppler ultrasound has proved to be a suitable imaging tool by providing information about the presence and the extent of pathologically active synovitis in arthritis and OA of the knee Where power Doppler US findings demonstrate a strong

correlation to histopathology in such cases. Overall, there was a significantly lower total colour Doppler score in OA patients presenting with a non-inflammatory knee condition compared with patients with inflammatory arthritis (**Abbasi et al;2017**)

Ultrasound of the knee is best suited for the evaluation of tendons, fluid collections and effusion, synovitis, periarticular soft tissue masses, muscles, and the collateral ligaments The availability of dynamic imaging in addition to the ability to visualize the microanatomy (fibrillar pattern)of tendons, ligaments,, and muscles are important advantages of ultrasound when applied to knee examination (**Beitinger et al;2013**).

The primary limitation of US of the knee is that it is operator dependent and requires proper training and experience for accurate image acquisition and interpretation. Further, limitations of US include incomplete evaluation of the deep structures of the knee, particularly the cruciate ligaments, the menisci, and the majority of the articular cartilage.. US, unlike MR imaging, cannot evaluate bone marrow edema or intramedullary bone lesions (Robert et al; 2009).

AIM OF the WORK

The aim of the current study is to reassess the utility of the updated ultrasound in the patients with osteoarthritis of the knee and outline its clinical application.

REVIEW OF LITERATURE ANATOMY OF THE KNEE JOINT

The knee is the largest synovial joint in the body and one of the most complex modified hinge joint. A comprehensive understanding of the anatomy and physiology of the structures of the knee is necessary for accurate diagnoses and informed decisions regarding treatment plans.

The knee is a complex modified hinge joint which can be conceptualized as consisting of 2 joints: a tibiofemoral and a patellofemoral joint. The tibiofemoral joint allows transmission of body weight from the femur to the tibia while providing hingelike, sagittal plane joint rotation along with a small degree of tibial axial rotation. The patellofemoral joint creates a frictionless transfer over the knee of the forces generated by contraction of the quadriceps femoris muscle (**Flandry and Hommel;2011**).

The knee can move in three different planes, offering a six degrees of freedom range of motion, (Fig.1) including the sagittal plane (flexion, extension), the transverse plane (internal, external rotation) and the frontal plane (varus, and valgus stress). The position of the knee between the two longest lever arms of the body, the femur and tibia, and its role in weight bearing renders it susceptible to injuries (Saavedraa et al.;2012).