BISPHENOL - A LEVELS IN FOOD AND FEED AND ITS HORMONAL DISRUPTION IN MALE AND FEMALE RATS

 $\mathbf{B}\mathbf{v}$

RANDA SAAD HASAN MOHAMED

B.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2010 M.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2015

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agricultural Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
CairoUniversity
EGYPT

2019

Format Reviewer

Vice Dean of Graduate studies

APPROVAL SHEET

BISPHENOL - A LEVELS IN FOOD AND FEED AND ITS HORMONAL DISRUPTION IN MALE AND FEMALE RATS

Ph.D. Thesis
In
Agric. Sci. (Agricultural Biochemistry)

By

RANDA SAAD HASAN MOHAMED

B.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2010 M.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2015

APPROVAL COMMITTEE

Dr. MOHAMADY ABDEL HAMED FAKHR ELDEIN Professor of Biochemistry, Fac. Agric., Menia University
Dr. MAHMOUD ABDEL HALIM MAHMOUD
Professor of Biochemistry, Fac. Agric., Cairo University
Dr. GHADA IBRAHIM MAHMOUD
Professor of Biochemistry, Fac. Agric., Cairo University
Dr. MOHYE ELDEIN ALI OSMAN
Professor of Biochemistry, Fac. Agric., Cairo University

Date: 30 / 10 /2019

SUPERVISION SHEET

BISPHENOL - A LEVELS IN FOOD AND FEED AND ITS HORMONAL DISRUPTION IN MALE AND FEMALE RATS

Ph.D. Thesis
In
Agric. Sci. (Agricultural Biochemistry)

By

RANDA SAAD HASAN MOHAMED

B.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2010 M.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2015

SUPERVISION COMMITTEE

Dr. MOHYE ELDEIN ALI OSMAN

Professor of Biochemistry, Fac. Agric., Cairo University

Dr. GHADA IBRAHIM MAHMOUD

Professor of Biochemistry, Fac. Agric., Cairo University

Dr. MOHAMED HASSANIN ELGAMMAL

Head Researcher of Pollution Department, Regional Center for Food and Feed (RCFF), Agriculture Research Centre (ARC), Giza, Egypt

Name of Candidate: Randa Saad Hasan Mohamed Degree: Ph.D.

Title of Thesis: Bisphenol - A Levels in Food and Feed and Its Hormonal

Disruption in Male and Female Rats.

Supervisors: Dr. Mohye El Dein Ali Osman

Dr. Ghada Ibrahim Mahmoud

Dr. Mohamed Hassanin El Gammal

Department: Agricultural Biochemistry **Approval:** 30/10/2019

ABSTRACT

Bisphenol A (BPA) is a pollutant which causes negative effects on human health. The aim of the present study is to determine BPA levels leaching of several kinds of canned foods, beverages, baby bottles and feed in local Markets by using gas chromatography-mass spectrum (GC/MS/MS). Also it was carried out to perceive the biological effects of administration of BPA on reproductive organs and hormonal levels in male and female albino Spargue-Dawely rats. The protective effect of rose water and clove oil on BPA was also investigated. In More than 130 different samples taken from Egyptian markets, the highest mean BPA level was found in chicken cocktail sausaged (710.59 ppb) which was given highly significant results with regard to all other food samples result, whilst the lowest was for tomato ketchup at (5.75 ppb). The leaching of BPA from baby bottles to milk was found to be highest (123.53 ppb) compared with other baby drinks. The thermal effect on number of uses on BPA migration indicated a positive relationship between them. The concentration of BPA in milk has reached 1046.79 ppb after baby bottles were used 100 times at 90°C. Ninety rats were divided in to 9 groups of males and 9 for females. Rats were exposed to different oral gavage route 3 times a week by doses of BPA (20 µg, 20 mg, 200 mg) /kg b.wt for 6 weeks BPA. BPA induced significant decrease in total and free testosterone (T) in male rats, in contrast of significant increase in thyroid stimulating hormone (TSH), Follicle stimulating hormone (FSH), progesterone, estrogen (E2) and prolactin (PRL) compared to control groups. Histopathological examination revealed that rose water or clove oil reduced testes and ovary damages induced by BPA. Rose water and clove oil components were scanned using GC/MS which showed that rose water and clove oil contain phenols, flavonoids and these inevitably confirms that a prominent role in preventing the damage during treatment.

Key words: Baby bottles, Bisphenol A, Clove oil, Feed, Food, Thermal effect, Numbers of use, Ovary, Rose water, Testes, TSH, Sex hormones.

DEDICATION

I dedicate this thesis to my lovely Parents, my brothers who support me in everything and my special friends who helped me to finish my Ph. D. thesis.

ACKNOWLEDGEMENT

No word could be sufficient to express my sincere gratitude and appreciation to **Prof. Dr. Mohye El-Dein Ali Osman** Professor of Biochemistry Department, Faculty of Agriculture, Cairo University for his infinite support, valuable guidance and fruitful criticism. It was a great honor to work under his meticulous supervision.

Who ploughed through several preliminary versions of my text, making critical suggestions and posing challenging questions. Her expertise, invaluable guidance, constant encouragement, affectionate attitude, understanding, patience and healthy criticism added considerably to my experience. Without his continual inspiration, it would have not been possible to complete this study.

This thesis could not have been done without the support and patience of the **Dr. Ghada Ibrahim Mahmoud** Professor of Biochemistry Department, Faculty of Agriculture, Cairo University. Thank you for your support and helpful suggestions, I will be forever thankful to you. You are truly an outstanding person and an able educator and, I thank you from the bottom of my heart.

I would like to express my gratitude to my supervisor **Dr. Mohamed** Hassanin El-Gammal Head of Organic Pollutants Laboratory, Regional Centre for Food and Feed (RCFF), Agriculture Research Centre (ARC), Giza, for the useful comments, remarks and engagement through the learning process of this Ph.D. thesis.

I Sincere thanks to **Dr. Gehan Gamil Ahmed Shehab**, Head Research in Pathology Department, Animal Health Institute, Doki, for performing histopathological examinations and interpretations.

Endless thanks to all my professors, staff member and colleague in the Biochemistry Department, Faculty of Agriculture, Cairo University for their friendly support and concern. Unfortunately, I cannot thank everyone by name because it would take a lifetime but, I just want you all to know that you count so much. Had it not been for all your benedictions were it not for your sincere love and help, I would never have completed this thesis. So thank you all.

LIST OF ABBREVIATIONS

NO.	Abbreviation	
1	acaca	acetyl-CoA carboxylase
2	ALP	alkaline phosphatase
3	AR	androgen receptor
4	BADGE	bisphenol A diglycidyl ethers
5	BMDL	benchmark dose lower-confidence limit
6	BMI	body mass index
7	BMP-2	bone morphogenic protein-2
8	BPA	Bisphenol A
9	BPA-DME	bisphenol A dimethyl ether
10	BPA-G	bisphenol glucuronide
11	BPA-MME	bisphenol A monomethyl ether
12	BPF	bisphenol-F
13	BPS	Bisphenol-S
14	bw	body weight
15	BW/d	body weight/ day
16	CAT	catalase
17	CEF	Food Contact Materials, Enzymes, Flavourings and
40	. •	Processing Aids
18	cpt1a	carnitine palmitoyltransferase 1α
19		marked bisphenol A
	DNMTs	DNA methylatransferases
21		Estradiol
	EAOPs	Electrochemical advanced oxidation processes
_	EC	European Commission
	ECB	European Chemicals Bureau
25	ECHA	European Chemical Agency
26	EC SCF	European Commission Scientific Committee
27	EDC _a	on Food Endowing diameting compounds
27	EDCs EDs	Endocrine disrupting compounds European Chamicals Purseu
28 29	EFSA	European Chemicals Bureau European Food Safety Authority
	ELISA	enzyme-linked immunosorbent assay
30	EPA RfD	Environmental Protection Agency Reference dose
31	LPA KID	Environmental Frotection Agency Reference dose

ABBREVIATIONS (Continued)

32	ERγ	estrogen related receptor-gamma
33	ERs	estrogen receptors
34	ESCs	embryonic stem cells
35	EU	European Union
36	fasn	fatty acid synthase
37	FDA	Food and Drug Administration
38	FSH	Follicle Stimulating Hormone
39	GC-MS	Gas chromatography - mass spectrometry
40	GH	growth hormone
41	GIT	gastrointestinal tract
42	GnRH	Gonadotropin releasing hormone
43	GSH	glutathione
44	GSI	gonadosomatic index
45	HED	human equivalent dose
46	HDPE	High density polyethylene
47	hPa	hectoPascals
48	INFOSAN	International Food Safety Authorities Network
49	LDPE	Low-Density Polyethylene
50	LH	Luteinizing hormone
51	LOAEL	lowest observed adverse effect level
52	LOD	limit of detection
53	LOEC	Lowest-Observed-Effect Concentration
54	MDA	Malondialdehyde
55	MOFs	multiple oocyte follicles
56	nf-kb	nuclear factor kappa-light-chain-enhancer of
		activated B cells
57	NMDRCs	non-monotonic dosage reaction bends
58	NO	nitric oxide
59	NOAEL	no observed adverse effect level
60	NOEC	No-Observed-Effect Concentration
61	NOS	nitric oxide synthase
62	OECD TG	Economic Co-operation and Development test
		guideline
63	8-OHdG	8-hydoxydeoxyguanosine