

Physicochemical and Separation Studies of some Lanthanides and some Coexisting Elements of Nuclear Significance from Various Sources

A Thesis Submitted by:

Mohamed Abd El-hameed Ghamry Abd El-Razike

M. Sc. of Science in Chemistry (2016)

Assistant Lecturer at Nuclear Chemistry Department

Hot Laboratories Center

Atomic Energy Authority

For the Degree of Doctor of Philosophy of Science (Chemistry)

To

Chemistry Department
Faculty of Science
Ain Shams University

Physicochemical and Separation Studies of some Lanthanides and some Coexisting Elements of Nuclear Significance from Various Sources

A Thesis submitted

By

Mohamed Abd El-hameed Ghamry Abd El-Razike

M. Sc. of Science Chemistry, 2016
Assistant Lecturer at Nuclear Chemistry Department,
Hot Laboratories Center - Egyptian Atomic Energy Authority (EAEA)

For the Degree of Doctor of Philosophy of Science

(Chemistry)

Supervised By:

Prof. Dr./ Mohamed Fathi El- Shahat

Professor of Inorganic and Analytical Chemistry

- Chemistry Department

- Faculty of Science

Ain Shams University

Prof. Dr. Alaa El-Din Abdel-Fattah Moustafa Abdel-Fattah

Professor of Radiochemistry - Under the Former of Radioisotopes production and Radiation Sources Division of Scientific Affairs, Nuclear Chemistry Department, Hot Laboratories Center - Atomic Energy Authority

Prof. Dr. Fatma Hafez El-Sweify

Professor of Radiochemistry- Former Head of Radioisotopes Production and Radiation Sources Division- Nuclear Chemistry Department, Hot Laboratories Center-Atomic Energy Authority

Dr. Shorouk Mohamed Aly Mohamed

Lecturer of Chemistry, Nuclear Chemistry Department, Hot Laboratories Center -Atomic Energy Authority

To Chemistry Department Faculty of Science, Ain Shams University

Approval Sheet

Thesis title:

"Physicochemical and Separation studies of some Lanthanides and some Coexisting Elements of Nuclear Significance from Various Sources"

Submitted by:

Mohamed Abd El-hameed Ghamry Abd El-Razike

M. Sc. of science in chemistry (2016)

For the Degree of Doctor of Philosophy of Science

(Chemistry)

This thesis has been approved by:

1. Prof. Dr./ Mohamed Fathi El- Shahat

Professor of Inorganic and Analytical Chemistry – Chemistry Department–Faculty of Science – Ain Shams University.

2. Prof. Dr. Fatma Hafez El-Sweify

Professor of Radiochemistry- Former Head of Radioisotopes production and Radiation Sources Division - Nuclear Chemistry Department -Hot Laboratories Center - Atomic Energy Authority.

3. Prof. Dr. Alaa El-Din Abdel-Fattah Moustafa Abdel - Fattah

Professor of Radiochemistry - Under the Former of Radioisotopes production and Radiation Sources Division of Scientific Affairs - Nuclear Chemistry Department - Hot Laboratories Center - Atomic Energy Authority.

4. Dr. Shorouk Mohamed Aly Mohamed

Lecturer of Chemistry, Nuclear Chemistry Department, Hot Laboratories Center - Atomic Energy Authority.

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel -Shafi

وَعَلَّمَكَ مَا لَمْ تَكُنْ تَعْلَمُ وَكَانَ فَضْلُ اللَّهِ عَلَيْكَ عَظِيماً

مُندَق الله الْعَظِيْم

(سورة النساء الآية 113)

ACKNOWLEDGEMENT

First and foremost I'd like to express my most sincere gratitude to "ALLAH", for enlightening my way and strengthening my well to produce this work.

I would like to express my deep gratitude and appreciation to **Prof. Dr. /**Mohamed Fathi El- Shahat, Professor of Inorganic and Analytical Chemistry

— Chemistry Department— Faculty of Science — Ain Shams University for supporting and sponsoring the work presented in this thesis and careful revision of this work.

I am highly indebted to **Prof. Dr. Fatma Hafez El-Sweify**, Professor of Radiochemistry, Nuclear Chemistry Department, Hot Labs. Center, Atomic Energy Authority, for suggesting the topics of research carried out in this thesis, planning of the experimental work, continuous supervision for this research comprehensive follow up during all phases of the present work, interesting and discussion. She has always been able to give direction in a manner that never destroyed, but always built my confidence and knowledge base. She has been a mentor, and an example of honesty, compassion, and forthrightness.

I would like to express my deep gratitude to **Prof. Dr. Alaa El-Din Abdel-Fattah Moustafa**, Professor of Radiochemistry, Nuclear Chemistry Department, Hot Labs. Center, Atomic Energy Authority, for his participation in suggesting the subject of this dissertation, for his continuous supervision during all stages of the work until the thesis has been performed and introduced successfully.

I would like to thank to **Dr. Shorouk Mohamed Aly,** Lecturer of Chemistry, Nuclear Chemistry Department, Hot Labs. Center, Atomic Energy Authority, for continuous help, sincere advices and encouragements.

I am sincerely grateful to my wife for unlimited support and looking after me. She and my sons put a smile on my face when I thought there was nothing to smile about.

Finally I would like to thank all my colleagues at Hot Labs. Center, Egyptian Atomic Energy Authority for their help in this work.

Mohamed Abd El-hameed Ghamry

To My Father and My Mother

To

My Lovely Wife and My Sons,
[Ziad and Ahmed]

&

My Brothers and My Sister

		Content	Page
Publis	hed work		
List of	tables		I
List of	figures		III
List of	abbreviat	ions	X
Aim o	f the work		XIII
Abstra	ct		XV
		1. Introduction	1
1.1.	Chemica	l properties of lanthanoids	1
1.2.	Chemistr	ry of some rare earth elements, accompanying	4
	elements	and actinides in aqueous solutions	
1.2.1.	Aqueous	chemistry of REE	4
	1.2.1.1	Aqueous chemistry of scandium	5
	1.2.1.2.	Aqueous chemistry of the lanthanoids	7
1.2.2.	The che	mistry of some accompanying elements with	15
	lanthanic	ods in their ores.	
	1.2.2.1.	Aqueous chemistry of chromium	15
	1.2.2.2.	Aqueous chemistry of zirconium and hafnium	16
	1.2.2.3.	Aqueous chemistry of niobium	19
	1.2.2.4.	Aqueous chemistry of iron	20
	1.2.2.5.	Aqueous chemistry of zinc	20
	1.2.2.6.	Aqueous chemistry of strontium	21
1.2.3.	Aqueous	chemistry of actinide elements	22
	1.2.3.1.	Aqueous chemistry of thorium	23
	1.2.3.2.	Aqueous chemistry of uranium	25
	1.2.3.3.	Aqueous chemistry of protactinium	27
	1.2.3.4.	Aqueous chemistry of neptunium	28
1.3.	The used	techniques	30
1.3.1.	Ion exch	ange	30
	1.3.1.1.	Organic ion exchanger	30
	1.3.1.2.	Inorganic ion exchangers	31
		1.3.1.2.1. Natural ion exchangers	31
		1.3.1.2.2. Synthetic inorganic ion exchangers	31
		1.3.1.2.2.1 Hydrous oxides of polyvalent metals	32

		1.3.1.2.2.2	Insoluble acidic salts of	33
			polyvalent metals	
		1.3.1.2.2.3	Salts of heteropoly acids	33
		1.3.1.2.2.4	Insoluble ferrocyanides	34
		1.3.1.2.2.5	Synthetic aluminosilicates	34
		1.3.1.2.2.6	Miscellaneous inorganic ion exchangers	34
	1.3.1.3	Operating r	nethods	35
		1.3.1.3.1	Batch operation (Static condition)	35
		1.3.1.3.2	Column operation (Dynamic condition)	35
	1.3.1.4	Ion exchang	ge behavior of rare earth elements	36
1.4.	The stu	died ore sample	es	39
	1.4.1.	Phosphate of	ore sample	39
	1.4.2.	Monazite or	re sample	40
1.5.	Instru	mental neutron	activation analysis (INAA)	43
	1.5.1.	Sample pre	paration and chemical operations	44
	1.5.2.	Activity me	easurement	45
1.6.	Litera analys	•	n instrumental neutron activation	45
1.7.		ture survey on celement using i	determination and separation of rare on exchange	48
		2. E	experimental	52
2.1.	Chemic	cals, reagents ar	nd materials	52
2.2.	Equipm	nents and instru	mentation	53
	2.2.1.	FT-IR Spector	meter	54
	2.2.2.	Scan electron	microscope	54
	2.2.3.	X-Ray diffrac	tometer	55
	2.2.4.	Pore sizer		55
	2.2.5.	Single - chann	nel analyzer	55
	2.2.6.	Multi- channe	l analyzer	55
2.3.	Experir	nentation		56
	2.3.1.	Radioactive tr	racers	56

		2.3.1.1.	Preparation of ¹⁴¹ Ce isotopes	57	
		2.3.1.2.	Preparation of ¹⁵² Eu and ¹⁵⁴ Eu	57	
			isotopes		
		2.3.1.3.	Preparation of ¹⁶⁰ Tb isotope	58	
		2.3.1.4.	Preparation of ¹⁶⁹ Yb isotope	59	
		2.3.1.5.	Preparation of ⁹⁵ Zr, ⁹⁵ Nb, ¹⁷⁵ Hf and	59	
			¹⁸¹ Hf isotopes		
		2.3.1.5.1.	Preparation of ⁹⁵ Zr isotope and ⁹⁵ Nb	59	
		2.3.1.5.2.	Preparation of ¹⁷⁵ Hf and ¹⁸¹ Hf	60	
	2.3.2.	Irradiation	of ores and standards samples	61	
		2.3.2.1.	Dissolution of the irradiated	61	
			monazite solution		
		2.3.2.2.	Dissolution of the irradiated	62	
			phosphate solution		
2.4.			anic ion exchangers	62	
	2.4.1.	_	on of ceric tungstate (CeW)	62	
	2.4.2.	2.4.2. Preparation of zirconium titanium phosphate			
2.5.	,				
2.6.	Ion exchange and adsorption studies				
	2.6.1.				
	2.6.2. Studies under dynamic conditions				
		3. Res	sults and Discussion	69	
3.1.	Charact	terization of	synthesized inorganic ion exchanger	69	
	(ZTP) a	and (CeW) s	amples		
	3.1.1.	FT-IR anal	lysis	69	
	3.1.2.	· ·	raction (XRD)	71	
	3.1.3.		electron microscopy (SEM) analysis of	72	
		ZTP and C	CeW		
	3.1.4	Porosity ar	nalysis	74	
3.2.		sicochemical studies on the sorption of some studied			
	elemen	ements			
	3.2.1.		ecting the sorption process	75	
			Effect of V/m(mL.g ⁻¹)	75	
		8	Effect of Zr:Ti mole ratio on the adsorption of ¹⁴¹ Ce(III), ¹⁶⁰ Tb(III) and ⁶⁹ Yb(III)	76	