The Role of FDG-PET/CT in Staging of Breast Cancer

AThesis

Submitted for partial fulfillment of M.D. Degree in Radiodiagnosis

By

Ahmed Mohamed Hasaan Ali Elnaggar

M.B.B.Ch, M.Sc Radiodiagnosis, Ain Shams University

Under Supervision of

Prof. Dr. Hesham Mahmoud Ahmed Mansour

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Dr. Gamal Eldeen Mohamed Neyazy

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Yasser Ibraheem Abdel Khaleq

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2019

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, Prof. Dr. Hesham Mahmoud Ahmed Mansour, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Gamal Eldeen Mohamed Neyazy**, Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his meticulous supervision, and his patience in reviewing and correcting this work. I am grateful for his close supervision.

I must express my deepest thanks to my **Dr. Yasser Ibraheem Abdel Khaleq**, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University for guiding me throughout this work and for the efforts and time he has devoted to accomplish this work. I greatly appreciate his efforts.

Special thanks to my **Parents**, my **Wife** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

🖎 Ahmed Mohamed Wasaan Ali Elnaggar

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Anatomy of the Breast	4
Pathology of Breast Cancer	20
Staging of Breast Cancer	37
Breast Imaging Modalities	46
Multidetector CT (MDCT) of the Breast	54
Role of PET/CT in Breast Cancer	58
Pitfalls in Oncologic Diagnosis with FDG-P	
Patients and Methods	78
Results	86
Illustrative Cases	105
Discussion	127
Summary	142
Conclusions	144
References	145
Arabic Summary	

List of Abbreviations

Abbr. Full-term

AJCC: American Joint Committee on Cancer

DCIS : Ductal carcinoma in situ

FDG: Fluorodeoxyglucose

IDC : Invasive ductal carcinoma

ILC: Invasive lobular carcinoma

LCIS : Lobular carcinoma in situ

MC : Medullary carcinoma

NET : Neuroendocrine tumor

NOS : Not otherwise specified

NST : No special type"

PET : Positron emission tomography

SD : Standard deviation

SPSS : Statistical package for social science

TDLU: Terminal duct lobular unit

TNM: Tumor, nodes, and metastases

UICC: International Union for Cancer Control

18F : Fluorine 18

List of Tables

Table No.	Title Page No.
Table (1):	Incidence of breast cancer in different quadrants
Table (2):	TNM Classification for Breast Cancer40
Table (3):	Anatomic stage/prognostic groups44
Table (4):	Summary of factors that may result in false-negative and false-positive findings70
Table (5):	The patients' characteristics
Table (6):	The patients with detected breast cancer by PET/CT versus CT
Table (7):	PET/CT characteristics of breast cancer lesions
Table (8):	Percentage of the different size of breast cancer lesions
Table (9):	The axillary lymph nodes involvement by PET/CT versus CT
Table (10):	The contralateral axillary lymph nodes involvement by PET/CT versus CT 92
Table (11):	The internal mammary lymph nodes involvement by PET/CT versus CT93
Table (12):	Other extra-axillary lymph nodes involvement by PET/CT versus CT
Table (13):	The site and percentage of the patients with extra-axillary lymph nodes involvement95

Table (14):	The pulmonary metastasis detected by PET/CT versus CT
Table (15):	The visceral metastasis detected by PET/CT versus CT
Table (16):	The sites of the visceral metastasis detected by combined PET/CT
Table (17):	The osseous deposits detected by PET/CT versus CT
Table (18):	The T staging by PET/CT versus CT 100
Table (19):	The N staging by PET/CT versus CT 101
Table (20):	The M staging by PET/CT versus CT 102
Table (21):	The staging of the involved patients 103
Table (22):	Overall comparison between combined PET/CT versus CT alone

List of Figures

Figure No	o. Title	Page No.
Figure (1):	Anterior view – breast shows maglands, lobules situated over the permajor muscle, axillary tail projection the axilla	ctoralis ng into
Figure (2):	Anatomy of the human breast, a loa TDLU	
Figure (3):	Lateral view of breast. The rectus Scarpa's fascia, splits into the anter posterior laminae.	ior and
Figure (4):	Illustration of vascular supply to the	e breast 11
Figure (5):	Lymphatic drainage of the indicating position of the sentinel node	lymph
Figure (6):	Nerves of axilla.	15
Figure (7):	Anatomy of the axilla	16
Figure (8):	Illustration of Level I, Level II and III axillary lymph nodes	
Figure (9):	Axial CT image of a young adult demonstrates dense fibroglandular tissue	breast
Figure (10):	Patient with fatty breasts. CT scan patient shows the fat attenuation breasts without abnormality	of the

Figure (11):	Histological grade of breast cancer as assessed by the Nottingham Grading	
	System	26
Figure (12):	Mucinous carcinoma.	28
Figure (13):	Micropapillary carcinoma.	30
Figure (14):	Neuroendocrine carcinoma with an alveolar pattern of distribution	31
Figure (15):	Invasive ductal carcinoma. Mediolateral mammogram of the left breast show a spiculated, dense, ill-defined mass	47
Figure (16):	Invasive ductal carcinoma	48
Figure (17):	Extremely dense breast.	49
Figure (18):	Ultrasonogram of carcinoma.	51
Figure (19):	Mucinous carcinoma in 52-year-old woman.	52
Figure (20):	A 53-year-old woman underwent chest CT after traumatic contusion	56
Figure (21):	Transaxial FDG-PET image (A), CT image (B), and fused PET/CT image (C), demonstrating a focal area of intense FDG uptake in the left breast	60
Figure (22):	Transaxial FDG-PET (A), and fused PET/CT image (B) with a small area of increased FDG uptake in a left axillary lymph node metastasis	63
Figure (23):	Detection of both lytic and sclerotic bone metastases with FDG PET/CT	65

Figure (24):	Extensive metastatic disease at PET/CT performed for pretreatment staging of invasive ductal carcinoma in a 48-year-old woman	66
Figure (25):	Results of PET/CT in a patient suspected of having recurrent breast carcinoma. Axial contrast-enhanced CT	68
Figure (26):	(A) Coronal CT, (B) PET, and (C) integrated PET-CT fusion images demonstrating the physiologic uptake of FDG in the imaged lower part of the cerebral-cerebellar cortex at the base of the skull and in the myocardium, liver, bone marrow, kidneys, renal pelvis, and urinary bladder.	75
Figure (27):	Images of 36 year old man with malignant thymoma who had undergone surgical tumor resection demonstrating physiologic bowel uptake	76
Figure (28):	Phillips Ingenuity TF PET/CT 128 Slice PET-CT machine (A) Siemens Biograph (B) PET-CT machines	79
Figure (29):	Percentage of breast cancer lesions in each side	87
Figure (30):	Percentage of breast cancer lesions according to its site in the breast	88
Figure (31):	Number of patients with detected breast cancer lesions by combined PET/CT and CT	89
Figure (32):	Number of different sizes of breast cancer lesions	90

Figure (33):	Number of patients with involved axillary lymph nodes by combined PET/CT and CT91
Figure (34):	Number of patients with involved contralateral axillary lymph nodes by combined PET/CT and CT92
Figure (35):	Number of patients with involved internal mammary lymph nodes by combined PET/CT and CT
Figure (36):	Number of patients with detected other extra-axillary by combined PET/CT and CT
Figure (37):	Sites of extra-axillary involved lymph nodes
Figure (38):	Patients with pulmonary metastasis detected by combined PET/CT and CT 96
Figure (39):	Detected visceral metastatic patients by combined PET/CT and CT
Figure (40):	Number of patients with osseous deposits detected by combined PET/CT and CT 99
Figure (41):	T stage classification using combined PET/CT and CT
Figure (42):	N stage classification using combined PET/CT and CT
Figure (43):	M stage classification using combined PET/CT and CT
Figure (44):	Percentage of each stage of breast cancer patients

Figure (45):	(A & B) axial combined PET/CT images, (C & D) axial post contrast CT cuts 105
Figure (46):	(A & B) axial post contrast CT cuts, (C & D) axial combined PET/CT images & (E) coronal combined PET/CT image
Figure (47):	(A, B & C) axial post contrast CT cuts, (D, E & F) axial combined PET/CT images
Figure (48):	(A) axial post contrast CT cuts (B) axial CT bone window, (C & D) axial combined PET/CT images. 108
Figure (49):	(A, B & C) axial post contrast CT cuts, (D, E & F) axial combined PET/CT images 109
Figure (50):	(A & B) coronal T1 weighted images, (C & D) sagittal T1 & STIR weighted images
Figure (51):	(Left) axial combined PET/CT images, (Right) Bone scan imaging
Figure (52):	(A & B) axial combined PET/CT images, (C & D) axial post contrast CT images 112
Figure (53):	(A, B & C) axial combined PET/CT images, (D, E & F) axial post contrast CT images
Figure (54):	(A & B) axial combined PET/CT images, (C & D) axial post contrast CT images 115
Figure (55):	(A & B) axial post contrast CT images, (C & D) combined PET/CT images & (E) coronal PET/CT image

Figure (56):	(A) sagittal bone window CT image, (B) sagittal combined PET/CT image, (C) bone scan imaging	116
Figure (57):	(A, B & C) coronal and axial post contrast CT images, (D, E & F) coronal and axial combined PET/CT images	118
Figure (58):	(A) Bone scan, (B) sagittal combined PET/CT & (C) sagittal CT bone window images.	119
Figure (59):	(A & B) axial combined PET/CT images, (C) axial soft tissue CT window & (D) axial CT lung window	120
Figure (60):	(A, B & C) axial combined PET/CT images, (D, E & F) axial bone window CT images & (G) sagittal combined PET/CT image.	121
Figure (61):	(A) axial post contrast CT image, (B) axial combined PET/CT image, (C) coronal & (D) sagittal combined PET/CT images	122
Figure (62):	(A, B & C) axial non-contrast CT images, (D, E & F) combined PET/CT images 1	123
Figure (63):	(A, B & C) axial non contrast CT images, (D, E & F) axial combined PET/CT images & (G) sagittal combined PET/CT image.	124
Figure (64):	(A, B & C) axial combined PET/CT images, (D, E & F) axial post contrast CT images.	125

Abstract

Background: Breast cancer is the most common non-skin cancer and the second leading cause of cancer related death in women. Breast cancer strikes women of all ages, races, ethnicities, socioeconomic strata, and geographic locales. Once breast cancer is diagnosed, the tumor stage has to be accurately determined before therapy chosen and the prognosis known. Aim of the Work: to highlight the role of PET-CT imaging in staging of patients with breast cancer. Patients and Methods: This study was carried out on a total of 51 female patients biopsyproved to have cancer breast coming to perform PET/CT scans for staging, preoperative or pre-therapeutic assessment with ages ranging from 27 to 78 years, in specialized private center in Cairo using combined PET-CT machine (Phillips Ingenuity TF PET/CT 128 Slice) from October 2017 to June 2019. Results: Combined PET/CT staged 3 patients as stage IA, 10 patients as stage IIA, 6 patients as stage IIB, 2 patients as stage IIIA, 3 patients as stage IIIB, 2 patients as stage IIIC and 25 patients as stage IV. Out of 51 patients, combined PET/CT upgraded the staging of 13 patients compared to initial CT staging. Conclusion: PET/CT is the technique of choice and indispensable tool for evaluation of the patients with breast cancer.

Key words: FDG-PET/CT, breast cancer staging

Introduction

Preast cancer is the most frequent cancer entity affecting women, and poses a major challenge for oncological research. Breast cancer is responsible for approximately 15% of all female cancer deaths, representing the second leading cause of cancer-related female death, and affecting not only elderly but many younger patients (*Riegger et al.*, 2012).

Breast cancer tumor stage at initial diagnosis determines prognosis and directs treatment planning. Current staging guidelines recommend clinical examination and multimodality conventional imaging, which includes mammography, ultrasound of the breast and ultrasound of the axillary fossae for local staging. Chest X-ray or chest computed tomography, bone scan and ultrasound of the liver to evaluate for distant metastases should be considered in patients with intermediate or high risk breast cancer. The availability of combined 18 F-2-Fluoro-2deoxy-Dglucose (18 F-FDG) positron emission tomography and computed tomography (PET/CT) as a whole body imaging method is increasing, as is its role in oncologic imaging, treatment, and management (Krammer et al., 2015).

Whole-body staging protocols using F18-FDG PET/CT including a fully diagnostic, full-dose CT scan with intravenously and per-orally administered contrast agent are used for a wide variety of cancer entities. Improved diagnostic accuracy has been documented for whole-body