AIN SHAMS UNIVERSITY FACULTY OF SCIENCE GEPHYSICS DEPARTMENT

PETROPHYSICAL CHARACTERISTICS OF THE NUBIA SAND STONE: GEBEL ABU HASSWA, SOUTH WESTERN SINIA, EGYPT

A Thesis Submitted in Partial Fulfillment of the Requirements of Science in Geophysics for the Master Degree

BY Hadeer Ahmad Ali Hassan Salh (B. Sc. in Geophysics, 2014)

To

GEOPHYSICS DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

Supervised by

Prof. Dr. Abdel Moktader A. ElSayed

Prof. of Petrophysics, Department of Geophysics, Faculty of Science, Ain Shams University

Prof. Dr. Mohamed Abdel Magid Kassab

El Wahab

Prof. Dr. Salah El Din Abd

Professor of Petrophysics,
Department of Exploration, Egyptian
Petroleum Research Institute.

Prof. of Electric Methods, Geophysics Department, Faculty of Science, Ain Shams University

Cairo, 2019

Note

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Master degree of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1) Geophysical field measurements.
- 2) Numerical analysis and computer programming.
- 3) Advanced Well Logging.
- 4) Formation Evaluation.
- 5) Physical properties of rocks.
- 6) Basin analysis.
- 7) Subsurface geology.
- 8) Geophysical exploration.
- 9) Reservoir evaluation.
- 10) Fluid dynamics.

He successfully passed the final examinations in these courses.

In fulfillment of the language requirement of the degree, he also passed the final examination of a course in the English language.

Head of Geophysics Department

Prof. Dr. Sami Hamed Abdel Nabi

Approval Sheet

PETROPHYSICAL CHARACTERISTICS OF THE NUBIA SAND STONE: GEBEL ABU HASSWA, SOUTH WESTERN SINIA, EGYPT

A Thesis Submitted for Partial Fulfillment for the Requirements of the Degree of Master of Science (M.Sc.) in Geophysics

By

Hadeer Ahmed ALI HASSAN

(B.Sc. in Geophysics – Faculty of Science – Ain Shams University – 2014)

Geophysics Department
Faculty of Science
Ain Shams University

Advisors	Approved
Prof. Dr. Abdel Moktader A. ElSayed (Ain Shams U	niversity)
Prof. Dr. Salah El Din Abd El Wahab (Ain Shams	
University)	**************
Prof. Dr. Mohamed Abdel Magid Kassab (EPRI)	

Head of Geophysics Department

Prof. Dr. Sami Hamed Abdel Nabi

Acknowledgment

In the beginning, I want to thank Allah, what was a good deed is from Allah and what was bad is from me.

I wish to thank **Dr. Abdel Moktader A. El Sayed** Professor of Petrophysics, Geophysics Department, Faculty of Science, Ain shams University for his valuable comments and supporting me to produce the best in this thesis

I wish to thank **Dr. Salah El Din Abd El Wahab** Professor of Petrophysics and Electricity at Geophysics Department, Faculty of Science, and Ain shams University for his valuable comments and sharing his precious time to reviewing and leading his comments in this thesis.

I want to thank **Dr. Nahla A. El Sayed** assistant professors in geophysics department (Exploration division), EPRI, for her helpful suggestions in the planning of this study.

I would like to express my sincere thanks to **Dr. Mohamed Kassab** Professor of Petrophysics, Department of Exploration, Egyptian Petroleum Research Institute for his valuable comments and sharing his precious time to reviewing and leading his comments in this thesis.

In addition, I appreciate the helping of **Dr. Abeer Ahmed** assistant professors in Petrophysics, EPRI, in petrographical description problem.

Finally, I appreciate the helping of **Moataz Mohamed** Lecturer Assistant, Geophysics Department, Faculty of Science, Ain shams University, for sharing his precious time to teach me software skills.

A special thanks to **Dr. Mohamed Maher** Department of Geology, Faculty of science, Zagazig University for helping in sampling Acquisition, preparation and handling.

Dedication

I would like to dedicate my work to my parents, my sister, my dear Husband, my daughter and my son whose love, help and support kept me going.

Abstract

This study is used to investigate the relationships between different geological attributes and petrophysical properties in order to detect the different rock types using various techniques such as HFU, EFU, and measured petrophysical parameters for the Paleozoic (Nubia sandstone) rocks, they are presented by Araba, Abu Durba, and Ahemir, and the Lower Cretaceous rocks represented by Malha Formation in Southwestern part of Sinai, Egypt.

The sedimentological features of the Nubia sandstone in the Abu Hasswa section were discussed using petrography, X-ray diffraction analysis, and the previous results of scanning electron microscope (SEM). The correlation between petrography and XRD results concluded that the samples had been suffered from dissolution process that caused increasing porosity. In addition to, the cementation process with various types of cements like silica overgrowth, ferruginous, and calcite minerals are investigated.

In the present work, fifty (51) rock samples were obtained, where thirty-two samples from Araba Fm, 3 samples from Abu Durba Fm, 10 samples from Ahemir Fm, and 6 samples from Malha Fm. The investigation of these samples reveal that the Nubia sandstone samples reflect high storage and flow capacity properties at some intervals, while in other some intervals show fair to bad storage and flow capacity properties. The hydraulic flow unit (HFU) discrimination was carried out based on permeability-porosity empirical relationship. the diagenetic processes have an important role to enhance or reduce the pore size and controlling the petrophysical behavior.

The porosity measurements of the samples of Abu Hasswa section showed that the porosity of the Paleozoic rocks of Abu Hasswa are varied from 2.69 to 29.6 % with mean value of 21.3 % and standard deviation of 5.367 %, variance value of 28.8 %, and median value of 22.4 %, while the permeability measurements of the samples of Abu Hasswa section showed that the permeability of the Paleozoic rocks of Abu Hasswa are varied from 0.0013 to 4027.66 md with mean value of 877.7 md and standard deviation of 1030.02 md, variance value of 1060943.74 md, and median value of 602.1 md, The results were collected together to build-up different petrophysical models. The petrophysical models were represented in cross plots between the different petrophysical properties, in which the reservoir facies and petrophysical properties can be imagined. Such models can support the detection of the potentiality of Paleozoic rocks to acquire different economic fluids.

Electrical properties of sedimentary rocks depend on the pore geometry, chemical and physical properties of rock-forming minerals, and fluid type and saturation and rock type. In this study, the electrical resistivity () measurements were carried out on 46 samples of Abu Hasswa section to estimate formation resistivity factor and cementation exponent (m). The relationship between porosity- formation resistivity factor redrawn using the electrical flow unit discrimination technique. This study indicates five HFU of different rock qualities, on the other hand it found three EFU. This differences in flow units' number was driven due to the effect of diagenetic processes represented by the cementation process of iron oxides that might act like pore bridges for electrical current.

Sonic wave velocity was measured for all studied samples with calculation of different elastic moduli and their relations with sonic wave velocities, such as Young's modulus (E), uniaxial stress state, shear wave modulus (μ), Poisson's ratio (), Bulk modulus (K), and Lame's constant (). The compressional have mean values of samples of Malha Fm, Araba Fm, Abu Durba Fm, and Ahemir Fm are 2.76, 2.26, 3.63, and 2.28 m/sec, while shear wave velocities have mean values of samples of Malha Fm, Araba Fm, Abu Durba Fm, and Ahemir Fm are 1.7, 1.59, 2.37, and 1.59 m/sec respectively. Each sample is attached to the P-Wave and S-Wave transducers to get V_P and V_S , and further leads to the calculations of the dynamic elastic properties of the different rock samples. The elastic parameters revealed that there is a significant relationship to the nature of rocks and the diagenesis processes of the study samples,

Finally, this research used the correlation between the different petrophysical parameters and the concluded sedimentological discrimination to construct multi regression models to predict the different petrophysical parameters with high correlation coefficients.

CONTENTS

Subject Pag	ge No.
Acknowledgment	III
Abstract	V
CONTENTS	VIII
LIST OF FIGURES	XII
LIST OF PLATES.	XV
LIST OF TABELS	XV
CHAPTER ONE: INTRODUCTION	
1. Literature Review of Geology	1
2. Objective and Aims of the Study	5
3. Methodology	7
4. Summary	7
CHAPTER TWO: PETROGRAPHY AND MINERALOGY	
1. Lithostratigraphy	8
2. Petrography	1
2.1. Quartz Arenite	1
2.1.1. Calcareous Quartz Arenite	2
2.1.2 Ferruginous Sandstone. 12	2
2.1.3. Highly Ferruginous Quartz Arenite	3
2.1.4 Siliceous Quartz Arenite	3
3. Scanning Electron Microscope (SEM)	9
4. X-Ray Diffraction Analysis (XRD)	C
5. Summary	5
CHAPTER THREE: STORAGE AND FLOW CAPACITY	
Preparation of Abu Hasswa Samples for Petrophysical Measurement	ts 28

1.1.	Cutting of samples.	28
1.2.	Cleaning of samples	28
1.3.	Drying after extraction	29
2.	Rock Density	30
2.1	Bulk density	30
2.2	Grain density	31
3.	Packing Index (PI)	33
4.	Porosity	34
4.1	Classification of porosity	35
5.	Permeability	37
6.	The relation between grain density and bulk density	39
7.	The relation between bulk density and porosity	40
8.	The relation between grain density and porosity	41
9.	The relation between grain density and permeability	41
10.	The relation between bulk density and permeability	42
11.	The relation between permeability and porosity	43
12.	Heterogeneity Quantification Methods	45
12.1	Lorenz Coefficient.	45
12.2	Dykstra Parson Method.	47
13.	Hydraulic Flow Unit (HFU)	49
14.	WINLAND R35 METHOD	56
15.	Summary	59
CHAP	TER FOUR : ELECRIC PROPERTIES	
1.	Electrical Resistivity	61
2.	Formation Resistivity Factor (F)	65
3.	Electrical Tortuosity ()	66
4.	The Relation between Formation Resistivity Factor (F) and Porosity (\emptyset)	67
5	The Relation between Formation Resistivity Factor (F) and Permeability	(k) 68

6.		Relation between Formation Resistivity Factor (F) and Bulk De	nsity (b)
7.		The relation between Tortuosity () and bulk density (b)	70
8.		The Relation between Tortuosity () and porosity (\emptyset)	71
9.		The relation between Tortuosity () and permeability (k)	71
10).	Electrical Flow Unit Concept (EFU)	72
11		Cementation Exponent	76
12	2.	Summary	77
C	HAP	TER FIVE : ACOUSTIC PROPERTIES AND ELASTIC M	ODULI
1.		Introduction	79
2.		Compressional Wave Velocity (Vp)	81
3.		Shear Wave Velocity (Vs)	81
4.		Dynamic Elastic properties	82
	4.1	Poisson's Ratio ()	83
	4.2	Young Modulus (E)	84
	4.3	Rigidity Modulus (µ)	84
	4.4	Bulk Modulus (K)	85
5.		Acoustic Properties and Storage, Flow Capacity and Rock Density Relationships	85
	5.1	The relationship between acoustic wave velocities (vp and vs) a bulk density (b)	
	5.2	Relationship between Acoustic Wave Velocities (Vp and Vs) at Porosity (Ø)	
	5.3	The relationship between Compressional Wave Velocity (Vp) a Shear Wave Velocity (Vs)	
	5.4	The relationship between the Ratio of Compressional to Shear Wave Velocities (Vp/Vs) with Compressional and Shear Wave Velocities (Vp and Vs)	88

5.5	to Slowness of Shear Wave	•
	(1/Vs)	89
5.6	The relationship between the square of the compressional wave (square of the shear wave (Vs2)	Vp2) to the 89
5.7	The relationship between Young's modulus (E) and compression and shear wave (Vs) velocities	· • /
5.8	The relationship between rigidity modulus (μ) and compressional shear wave (Vs) velocities	
5.9	The relationship between bulk modulus (K) and compressional (shear wave (Vs) velocities	Vp) and 91
5.10	The relationship between Poisson's ratio () and (Vp/Vs) ratio	92
5.11	The relationship between elastic moduli and porosity	93
	Velocity-Porosity Chart for Cementation Exponent prediction.	93
	Summary	95
НАР	WED CIV. CORRELATION OF THE LOCATION DIVISION	
	TER SIX :CORRELATION OF THE MEASURED PHYSIC METERS AND PETROPHYSICAL MODELING	CAL
		97
	METERS AND PETROPHYSICAL MODELING	
	METERS AND PETROPHYSICAL MODELING Porosity Modeling	97
	METERS AND PETROPHYSICAL MODELING Porosity Modeling Permeability Modeling	97 98
	METERS AND PETROPHYSICAL MODELING Porosity Modeling	97 98 99
	Permeability Modeling	97 98 99 99
	Permeability Modeling	97 98 99 99 100
ARAI	Permeability Modeling	97 98 99 99 100 100
JMM	Porosity Modeling	97 98 99 99 100 100
	5.7 5.8 5.9 5.10 5.11	 (1/Vs)

LIST OF FIGURES

Fig (1- 1): Location map of the study area
Fig (1- 2): Location map showing the areas of exposed Lower Paleozoic rocks in Egypt (modified after Abdallah, 1992)
Fig (1- 3): Correlation chart showing the vertical and lateral lithological changes of the Araba Formation in Sinai and Gabal El-Zeit modified after (Khalifa et al., 2006)
Fig (2- 1): Lithostratigraphic section of Nubia sandstone at Gebel Abu Hasswa
Fig (2- 2): Ternary diagram of samples of Abu Hasswa section
Fig (2- 3): X-ray diffraction cross plot of the studied bulk sample 100
Fig (2- 4): X-ray diffraction cross plot of the studied bulk sample 103
Fig (2- 5): X-ray diffraction cross plot of the studied bulk sample 110
Fig (2- 5): X-ray diffraction cross plot of the studied bulk sample 11222
Fig (2-7): X-ray diffraction cross plot of the studied bulk sample 116
Fig (2- 8): X-ray diffraction cross plot of the studied bulk sample 118
Fig (2- 9): X-ray diffraction cross plot of the studied bulk sample 132
Fig (2- 10): X-ray diffraction cross plot of the studied bulk sample 14723
Fig (2- 11): X-ray diffraction cross plot of the studied bulk sample 15624
Fig (2- 12): X-ray diffraction cross plot of the studied bulk sample 15924
Fig (3-1): Histogram and cumulative frequency percentage curve bulk density of all samples of Abu Hasswa section
Fig (3-2): Histogram and cumulative frequency percentage curve of grain density of all samples of Abu Hasswa section
Fig (3-3): Histogram and cumulative frequency percentage curve of PI of all samples of Abu Hasswa section
Fig (3-4): Histogram and cumulative frequency percentage curve of porosity of all samples of Abu Hasswa section
Fig (3-5): Histogram and cumulative frequency percentage curve of permeability of all samples of Abu Hasswa
Fig (3-6): The relation between the bulk density and the grain density, (a) Araba fm, (b) Abu Durba fm, (c) Ahemir fm, and (d) Malha fm40
Fig (3-7): The relation between porosity and bulk density
Fig (3 - 8): The relation between grain density and porosity

Fig (3 - 9): The relation between grain density and permeability
Fig (3 - 10): The relation between bulk density and permeability
Fig (3 - 11): The relation between log permeability and porosity of Abu Hasswa samples 43
Fig (3 - 12): Flow capacity vs storage capacity distribution (Craig, 1971)46
Fig (3 - 13): Fraction of flow vs. storage capacity for determination of Lk
Fig (3 - 14): Characterization of reservoir heterogeneity by permeability variation (Willhite, 1986)
Fig (3 - 15): permeability distribution for the Burbank Sandstone
Fig (3 - 16): RMS calculation of HFU clusters
Fig (3 - 17): The relationship between cumulative permeability and flow zone indicator 52
Fig (3 - 18): Histogram and cumulative frequency percentage curve of RQI of all samples of Abu Hasswa section
Fig (3 - 19): Shows the relation between RQI and pore to grain volume
Fig (3 - 20): Histogram and cumulative frequency percentage curve of FZI of all samples of Abu Hasswa section
Fig (3 - 21): Porosity–permeability relationship of all the study samples with HFU 55
Fig (3 - 22): The relation between actual and predicted permeability
Fig (3 - 23): Porosity–permeability relationship of all the study samples with R35 (Winland) lines
Fig (3 - 24): The relation between Win R35 and FZI
Fig (3 - 25): shows the relation between Win R35 and FZI with permeability (ck) 59
Fig (4 - 1): Histogram and cumulative frequency percentage curve of Resistivity at 6000 ppm of all samples of Abu Hasswa section
Fig (4 - 2): Histogram and cumulative frequency percentage curve of Resistivity at 30000 ppm of all samples of Abu Hasswa section
Fig (4 - 3): Histogram and cumulative frequency percentage curve of Resistivity at 60000 ppm of all samples of Abu Hasswa section
Fig (4 - 4): Histogram and cumulative frequency percentage curve of electrical tortuosity of Abu Hasswa samples
Fig (4 - 5): The relation between the formation resistivity factor of three different concentrations and porosity of Abu Hasswa samples
Fig (4 - 6): The relation between the formation resistivity factor of three different concentrations and permeability (mD) of Abu Hasswa samples
Fig (4 - 7): The relation between formation resistivity factor of three different concentrations and bulk density (gm/cc) of Abu Hasswa samples

Fig (4 - 8): The relation between tortuosity and bulk density (gm/cc) of Abu Hasswa samples
Fig (4 - 9): The relation between tortuosity and porosity of Abu Hasswa samples
Fig (4 - 10): The relation between tortuosity and permeability of Abu Hasswa samples 71
Fig (4 - 11): The comparison between RQI (red) and QRI (blue)
Fig (4 - 12): The relation between ERI and RQI
Fig (4 - 13): The relation between formation resistivity factor and porosity with CZI 74
Fig (4 - 14): The relation between tortuosity and porosity with EFUs
Fig (4 - 15): The relation between tortuosity and permeability with EFUs
Fig (4 - 16): Histogram and cumulative frequency percentage curve of the cementation exponent of Abu Hasswa section samples
Fig (5 - 1): Histogram and cumulative frequency percentage curve of Vp of all samples of Abu Hasswa section
Fig (5 - 2): Histogram and cumulative frequency percentage curve of Vs of all samples of Abu Hasswa section
Fig (5 - 3): Elastic moduli with stress directions
Fig (5 - 4): The relationship between bulk density (x-axis) and Vp (y-axis)
Fig (5 - 5): The relationship between porosity (x-axis) and Vp (y-axis)
Fig (5 - 6): The relationship between Vp (x-axis) and Vs (y-axis)
Fig (5 - 7): The relationship between Vp (x-axis) and Vp/Vs (y-axis)88
Fig (5 - 8): The relationship between Vs (x-axis) and Vp/Vs (y-axis)
Fig (5 - 9): The relationship between (1/Vp) (x-axis) and (1/Vs) (y-axis)
Fig (5 - 10): The relationship between (Vp)2 (x-axis) and (Vs)2 (y-axis)90
Fig (5 - 11): The relationship between (Vp and Vs) (x-axis) and (Young's modulus) (y-axis).
Fig (5 - 12): The relationship between (Vp and Vs) (x-axis) and (rigidity modulus) (y-axis).
Fig (5 - 13): The relationship between (Vp and Vs) (x-axis) and (bulk modulus) (y-axis).
Fig (5 - 14): shows the relation between (y-axis) and Vp/Vs (x-axis) ratios92
Fig (5 - 15): The relationship between porosity (x-axis) and (Lambda*Rhob) (Rigidity*Rhob) (y-axis)
Fig (5 - 16): Velocity- porosity chart of El-Sayed, 1995 with the sudy samples of Abu Hasswa Section