

Study of the Possible Mechanisms for the Role of Mesenchymal Stem Cells in Treating Acute Kidney Injury in a Rat Model

A Thesis

Submitted for the degree of Ph.D. of Science in Biochemistry As a partial fulfillment for requirements of the Ph.D. of Science

By Rehab Selim El- Saved Abo- Hashem

Assistant researcher- National Research Centre (M.Sc. Biochemistry, Faculty of Science, Helwan University, 2011)

Under the Supervision of

Prof. Gilane Mohamed Sabry

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Prof. Somia Hassan Abd- Allah

Professor of Biochemistry Medical Biochemistry and Molecular Biology Department Faculty of Medicine - Zagazig University

Prof. Hanaa Hamdy Ahmed

Professor of Hormones Head of Hormones Department Medical Research Division National Research Centre

Dr. Rasha El-Sherif Hassan

Assistant Professor of Biochemistry
Biochemistry Department
Faculty of Science
Ain Shams University

Biochemistry Department Faculty of Science - Ain Shams University (2019)

كلية العلوم قسم الكيمياء الحيوية

شكر و تقدير

اشكر الأساتذة الذين قاموا بالإشراف و هم:

أ.د. جيلان محمد صبري

أستاذ الكيمياء الحيوية- كلية العلوم- جامعة عين شمس

أ.د. هناء حمدي أحمد

أستاذ و رئيس قسم الهرمونات - المركز القومي للبحوث

أ.د. سمية حسن عبد الله

أستاذ الكيمياء الحيوية- كلية الطب- جامعة الزقازيق

د. رشا الشريف حسن

أستاذ مساعد الكيمياء الحيوية- كلية العلوم - جامعة عين شمس

أ.د. وجدى خليل بسالى خليل

أستاذ الوراثة الجزيئية- المركز القومي للبحوث

د. عزيزة بكر عبد العزيز

أستاذ مساعد الكيمياء الحيوية- المركز القومي للبحوث

د. نهال سليم السيد أبوهاشم

أستاذ مساعد الباثولوجي- كلية الطب- جامعة الزقازيق

My deepest heartfelt gratefulness to **Prof. Hanaa Hamdy Ahmed**, Professor of Hormones, Head of Hormones Department, Medical Research Division, National Research Centre for suggesting the point of this thesis, building up the hypothesis related to the results. Also I thank her kind supervision, continuous support and valuable guidance in all of the theoretical and practical aspects of this work.

I wish to thank **Prof. Gilane Mohamed Sabry**, professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for kindly supervising the present work, reading and criticizing the thesis. Her valuable guidance and ultimate support are greatly appreciated.

I express my appreciation to **Prof. Somia Hassan Abd-Allah**, Professor of Biochemistry, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University for her great help and valuable advices to accomplish this work in the part of stem cells of the current work.

Sincere thanks and gratitude are to **Dr. Rasha El-Sherif Hassan**, Assistant Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for kindly supervising this work, her valuable guidance and ultimate support are greatly appreciated.

I wish to express my deepest feeling of gratitude of **Prof. Wagdy Khalil Bassaly Khalil**, Professor of Molecular Genetic, Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre for his scientific help and providing all facilities throughout this work in regarding the molecular study of the current work.

I wish to thank **Dr. Aziza Bakr Shalby**, Assistant professor of Biochemistry, Hormones Department, Medical Research Division, National Research Centre for her scientific help and continuous support.

I wish to thank **Dr. Nehal Selim Abo-Hashem**, Assistant Professor of Pathology, Pathology Department, Faculty of Medicine, Zagazig University, for her kind cooperation in conducting the histopathological investigations of the current study.

Abbreviations

ACE Angiotensin converting enzyme

AD Alzheimer's disease

AD-MSCs Adipose tissue-derived mesenchymal stem cells

ADOI Acute Dialysis Quality Initiative

AF Amniotic fluid

AIF Apoptosis-inducing factor

AII Angiotensin II
AKI Acute kidney injury

AKIN Acute Kidney Injury Network

Akt Protein Kinase B
ANOVA Analysis of variance
ANP Atrial natiuretic peptide
ARF Acute renal failure

Asp Aspartate

Bak Bcl-2-antagonist/killer
Bax Bcl-2-associated X protein

Bcl-2 B cell lymphoma-2

Bcl-xlB-cell lymphoma-extra largeBcl-xsB-cell lymphoma-extra smallbFGFBasic fibroblast growth factor

BM-MSCs Bone marrow-derived mesenchymal stem cells

BMPs Bone morphogenetic proteins

CAT Catalase

CCAAT/EBPs (cytosine-cytosine-adenosine-adenosine-thymidine)-

enhancer-binding proteins

CD Cluster of differentiation

CDDP Cisplatin (cis- diamine di-chloro platinum)

CKD Chronic kidney diseases
COX-2 Cyclooxygenase-2

CRRT Continuous renal replacement therapy
Crry Complement receptor 1-related protein y
CTL-A4 Cytotoxic T-lymphocyte-associated protein 4

CXCL-2 (C-X-C motif) ligand 2

Cys C Cystatin C Cytochrome *c*

DAMP Damage-associated molecular pattern

DEPC Diethylpyrocarbonate

Dkk1 Dickkopf-1

DMEM Dulbecco's Modified Eagle's Medium

eCCL Estimated creatinine clearance **EDTA** Ethylene diamine tetra acetic acid

EGF Epidermal growth factor

eNOS Endothelial nitric oxide synthase

EPO Erythropoietin

ER Endoplasmic reticulum

ERK Extracellular signal-regulated kinase

ESRD End stage renal diseases FBS Fetal bovine serum

FENa Fractional excretion of sodium **FGF-2** Fibroblast growth factor -2

FoxP3 Forkhead box P3 Frzb-1 Frizzled b-1

FSP-1 Fibroblast-specific protein-1

G-CSF Granulocyte colony stimulating factor

GFR Glomerular filtration rate

GM-CSF Granulocyte-macrophage colony-stimulating factor

GPx
Glutathione peroxidase
Reduced glutathione
GSH-Rx
Glutathione reductase
GSSG
Oxidized glutathione
GVHD
Graft-versus-host disease
H₂O₂
Hydrogen peroxide
HD
Huntington's disease

HGF Hepatocyte growth factorHIF Hypoxia-inducible factor

His Histidine

HLA-DR Human leukocyte antigen – DR isotype HLA-G5 Human leukocyte antigen-G5 isotype

HO-1 Heme oxygenase-1 HRP Horseradish peroxidase

ICAM-1 Intercellular adhesion molecule-1

ICU Intensive care unit IFN -γ Interferon- gamma

IGF-1 Insulin-like growth factor-1 IHD Intermittent hemodialysis

IL-18 Interleukin- 18IL-6 Interleukin-6Ile Isoleucine

iNOS Inducible nitric oxide synthaseIP3R Inositol trisphosphate receptorIPSC Induced pluripotent stem cell

IR Ischemia-reperfusion

IRF-1 Interferon regulatory factor-1

KDIGO Kidney Disease Improving Global Outcomes

KIM-1 Kidney injury molecule-1

L-FABP Liver fatty acid-binding protein
 LIF Leukemia inhibitory factor
 MAPK Mitogen-activated protein kinase
 MCP-1 Monocyte chemoattractant protein-1

MDA Malondialdehyde

MIP-2 Macrophage inflammatory protein-2
MKK4 Mitogen activated protein kinase kinase 4

MMPs Matrix metalloproteinases

MnTMPyP Manganese (III) tetrakis (1-methyl-4-pyridyl)

porphyrin

MPO Myeloperoxidase

MSCs Mesenchymal stem cells

NAC *N*-acetylcysteine

NADPH Nicotinamide adenine dinucleotide phosphate

NAG *N*-acetyl- β -D-glucosaminidase

NF-κB Nuclear factor- kappa B

NGAL Neutrophil gelatinase-associated lipocalin

NGF-β Nerve Growth Factor- β
NKT Natural killer T cells

NO Nitric oxide

NQO-1 NADPH quinone oxidoreductase- 1

Nrf2 Nuclear factor erythroid 2–related factor 2

O'₂ Superoxide anion OH Hydroxyl radical

Octamer-binding transcription factor- 3/4

ONOO Peroxynitrite
OS Oxidative stress

PAMP Pathogen-associated molecular patterns

PBS Phosphate-buffered saline
PDGF Platelet-derived growth factor
PDL-1 Programmed death-ligand-1

PGE-2 Prostaglandin E2

PI3K Phosphatidylinositol-3-kinase

PIGF Placental growth factor PKH-26 Paul Karl Horan-26

PPAR Peroxisome proliferator-activated receptor

pRIFLE Pediatric RIFLE

RAS Renin– angiotensin system

RBF Renal blood flow rex-1 Reduced expression-1

RIFLE Risk, injury, failure, loss of function and end-stage

renal failure

RNS Reactive nitrogen species
ROS Reactive oxygen species
RRT Renal replacement therapy

Runx-2 Runt-related transcription factor-2

SCr Serum creatinine

sFRP1 secreted frizzled related protein 1

Sirt1 Sirtuin-1

Smad7 Mothers against decapentaplegic homolog7

SOD Superoxide dismutase TAE Tris-acetate-EDTA

TGF-β Transforming growth factor- beta
TIM-1 T cell immunoglobulin mucin-1

TLR Toll like receptor

TMB 3,3′,5,5′-Tetramethylbenzidine **TNF-***α* Tumor necrosis factor-alpha

Tregs Regulatory T cells

TSG-6 TNFα-stimulated gene-6

TUNEL Terminal deoxynucleotidyl transferase dUTP nick

end labeling

Tyr Tyrosine

UC Umbilical cord UTs Urea transporters

VCAM-1
VEGF
Vascular cell adhesion molecule-1
VEGF
Vascular endothelial growth factor
Wnt
Wingless-related integration site
α-SMA
Alpha-smooth muscle actin
CMJ
Cortico-medullary junction

DAI DNA-dependent activator of IFN-regulatory factor

MPT Mitochondrial permeability transition pore RIPK3 Receptor-interacting serine-protein kinase 3

List of contents

Title	Page
Abstract	i
Introduction	1
Aim of the Work	5
Review of literature	6
Acute kidney injury (AKI)	6
Acute kidney injury: why a new term?	6
Staging of AKI	7
Risk, Injury, Failure, Loss, and End-stage renal disease (RIFLE)	7
Pediatric RIFLE (pRIFLE)	7
The Acute Kidney Injury Network (AKIN)	7
Kidney Disease Improving Global Outcomes (KDIGO)	8
Epidemiology of AKI	9
Etiology of AKI	10
Prerenal causes	10
Intrinsic renal causes	11
Post renal causes	12
Pathophysiology of acute kidney injury	13
Phases of acute kidney injury	13
Inflammation in acute kidney injury	15
The mediators of inflammation contributing to AKI pathogenesis	16
Renal endothelial cells	16
Renal tubular epithelium	17
Cytokines	17
Chemokines	17

Title	Page
Adhesion molecules	18
Complement system and toll-like receptors	18
Inflammatory cells	19
Apoptotic and necrotic cell death in AKI	20
Main apoptotic pathways in AKI	22
Regulated necrosis	23
Necroptosis	24
Pyroptosis	25
Ferroptosis—Iron-Dependent Necrosis	25
Oxidative stress in acute kidney injury	27
Oxidative stress and antioxidant defense system	27
Reactive oxygen species in response to injury	29
Dysregulated angiogenesis in AKI	30
Diagnosis of AKI	31
Serum creatinine level	32
Urine electrolyte	32
Imaging studies	33
Renal biopsy	33
AKI treatment	34
Managing hemodynamic and fluid status	34
Pharmacotherapy	35
Intrarenal renin-angiotensin system (RAS) activation	35
Renin- angiotensin system inhibitors	37
Losartan	37
Losartan and glomerular filtration rate	38
Renal replacement therapy (RRT)	39
Stem cell therapy	40

Title	Page
Cisplatin and AKI	41
Cisplatin uptake into renal cells	41
Cisplatin metabolism	42
Intracellular events that damage renal cells	43
Proximal tubular injury	43
Apoptotic pathway activation	44
Oxidative and nitrosative stress	46
Inflammatory response	47
Renal vascular injury	48
Stem cells	49
Classification of stem cells on the basis of potency	50
Classification of stem cells on the basis of their sources	51
Embryonic stem cells	51
Cord blood stem cells	51
Fetal stem cells	52
Adult stem cells	52
Human skeletal muscle derived stem cells	53
Neural stem cells	53
Hematopoietic stem cells	53
Bone marrow stromal cells	54
Dental stem cells	54
Induced pluripotent stem cell (IPS)	54
Mesenchymal stem cells	55
Mesenchymal stem cells (MSCs)	56
Sources of MSCs	56
Bone marrow-derived MSCs (BM-MSCs)	57
Adipose tissue-derived MSCs (AD-MSCs)	57

Title	Page
Umblical cord blood-derived MSCs (UCB-MSCs)	58
Amniotic membrane-derived MSCs	58
Surface markers on MSCs	58
Differentiation of MSCs	60
Osteogenic differentiation	61
Chondrogenic differentiation	62
Adipogenic differentiation	63
Circulation and niches of MSCs	64
Growth of MSCs	65
Migration and homing of MSCs	66
Mechanisms of MSCs against acute kidney injury	68
Anti- inflammatory/ Immunomodulatory properties of MSCs on AKI	69
Pro-angiogenic potential of MSCs on AKI	69
Anti- apoptotic effects of MSCs on AKI	70
Anti- fibrotic mechanisms of MSCs on AKI	70
Anti- oxidant role of MSCs on AKI	71
Materials and Methods	73
Mesenchymal stem cells isolation and propagation	73
Bone marrow mesenchymal stem cells (BM-MSCs) isolation and expansion	74
Adipose tissue derived MSCs (AD- MSCs) isolation and expansion	76
Characterization of MSCs	78
(a) Morphological characterization	78
(b) Detection of CD29, CD166, CD45 and CD34 gene expressions	78

Title	Page
Influence of BM-MSCs and AD-MSCs transplantation on proapoptotic (p38) and anti-apoptotic (Bcl-2) gene expressions in AKI rat model.	140
Influence of BM-MSCs and AD-MSCs transplantation on the relative expression of pro- angiogenic gene (VEGF) in AKI rat model.	145
D-Histopathological descriptions	148
Discussion	157
Isolated MSCs characteristics	158
Homing of MSCs	160
Influence of BM-MSCs and AD-MSCs transplantation on serum creatinine, urea, cystatin C and urinary KIM-1 levels in AKI model	160
Influence of BM-MSCs and AD-MSCs transplantation on inflammatory markers (serum TNF-α, MCP-1, MIP-2 and urinary IL-18) in AKI model	171
Influence of BM-MSCs and AD-MSCs transplantation on the oxidant/ antioxidant balance in AKI model.	178
Influence of BM-MSCs and AD-MSCs transplantation on relative expression level of p38 and Bcl-2 genes in AKI rat model.	182
Influence of BM-MSCs and AD-MSCs transplantation on relative expression of VEGF gene in AKI rat model.	186
Influence of BM-MSCs and AD-MSCs transplantation on the kidney structure	188
Summary	191
Conclusion	194
References	195
Arabic abstract	
Arabic summary	