

Effect of different dentin substitute materials on fracture resistance of MOD, endodontically treated maxillary premolars. An in vitro study

Thesis submitted to Operative Dentistry Department, Faculty of Dentistry,

Ain Shams University in the partial fulfillment of the requirements of Master

Degree in Operative Dentistry

by

Islam Ibrahim Mohammed Ibrahim

B.D.S. Faculty of Dentistry, Mansoura University, 2009

Ain Shams University 2019

Supervisors

Dr. Omaima Hassan Ghallab

Professor at Operative Dentistry Department Faculty of Dentistry, Ain Shams University

Dr. Mohammed Nasser Mohammed Anwar

Lecturer at Operative Dentistry Department Faculty of Dentistry, Ain Shams University

Acknowledgment

First of all I would like to thank **God** Almighty for giving me the strength to accomplish this work.

I would like to express my deep gratitude to:

Dr. Omaima Hassan Ghallab Professor and Head of Operative Dentistry Department, Faculty of Dentistry, Ain Shams University for her valuable guidance, her efforts and help in this research, for her time and knowledge which she gave to me and lastly for her great morals, kindness and respect we learnt from her.

I would also like to express my deepest thanks and gratitude to **Dr. Mohammed Nasser** Lecturer, Operative Dentistry Department, Faculty of Dentistry, Ain Shams University, for his continuous support during preparation of this work.

I would like to thank all the **members of the Operative Dentistry Department** Ain Shams University, for their valuable help and co-operation.

Dedication

To my caring Mother for all her prayers,

To my Father for his unlimited support and effort,

...my wife for all her support, time and love.

My son Omar and my daughter Mariam for all happiness and lovely moments they offer to us

To all my family and my friends who stand beside me.

Contents

List of contents

List of tables.	i
List of figures.	ii
Introduction	1
Review of literature.	
Aim of the study	26
Materials and methods	27
Results	43
Discussion	55
Summary and Conclusions.	61
References	64
Arabic summary	

List of tables:

Table No.	<u>Table title.</u>	Page No.
Table (1)	Material/manufacturer, description, composition,	27
	and lot #.	
Table (2)	variables of the study	32
Table (3)	Factorial design of the variables of the study	33
Table (4)	Descriptive statistics for fracture resistance (N) in	43
	different groups	
Table (5)	Effect of different variables and their interactions	44
	on fracture resistance (N)	
Table (6)	Mean ± standard deviation (SD) values of fracture	45
	resistance (N) for different materials	
Table (7)	Mean ± standard deviation (SD) of fracture	46
	resistance (N) with and without thermocycling	
Table (8)	Mean ± standard deviation (SD) of fracture	48
	resistance (N) for different materials with and	
	without thermocycling	
Table (9)	Frequencies (n) and Percentages (%) of mode of	50
	fracture in different materials	
Table (10)	Frequencies (n) and Percentages (%) of mode of	51
	fracture in samples with and without thermocycling	

List of figures

Figure No.	Figure title	Page No.
Figure (1)	Eco-EtchIvoclar Vivadent	29
Figure (2)	ALL-BOND UNIVERSAL(BISCO)	29
Figure(3)	nanohybrid compositeFiltek.250XT (3M ESPE,USA)	29
Figure (4)	Bulk fill flowable composite X-tra base,	30
	(VOCO GmbH, Cuxhaven, Germany)	
Figure (5)	Fiber-reinforced composite everX posterior,	30
	(GC, Tokyo, Japan)	
Figure (6)	Resin modified glass ionomer Fuji II LC,	30
	(GC, Tokyo, Japan)	
Figure (7)	custom made dental surveyor	35
Figure (8)	schematic diagram of the MOD cavity preparation	36
Figure (9)	custom made dental surveyor to hold high speed	36
	headpiece perpendicular to tooth surface	
Figure (10)	Omni-matrix (Ultradent, USA)	39
Figure(11)	fabrication of 1 mm thickness proximal walls by nanohaybrid composite resin	39
Figure (12)	Schematic illustration of the restorative technique of the tooth model (A) filled with nanohybrid conventional composite (B) filled with Resin modified glass ionomer [RMGI](C) filled with Bulk fill flowable composite (D) filled with Short fibers reinforced composite	40

Figure (13)	thermocycling machine	41
Figure(14)	universal testing machine	42
Figure (15)	Bar chart showing average fracture resistance (N) for different materials	46
Figure (16)	Bar chart showing average fracture resistance (N) with and without thermocycling	47
Figure (17)	Bar chart showing average fracture resistance (N) for different materials with and without thermocycling	49
Figure (18)	Bar chart showing average fracture resistance (N) with and without thermocycling within different materials	49
Figure (19)	Stacked bar chart showing percentage of different modes of fracture within different materials	51
Figure (20)	Stacked bar chart showing percentage of different modes of fracture of samples with and without thermocycling.	52
Figures(21)	specimens showing favorable fracture pattern	53
Figures(22)	specimens showing unfavorable fracture pattern	54

Introduction

Fractures are more common in teeth after endodontic treatment due to decreased coronal and root dentin and loss of axial walls. One of the main factors of extraction of endodontically treated teeth is non-restorable fracture. Endodontically treated premolars have increased risk of fracture among all teeth. ¹Several techniques and materials have been used for restoring endodontically treated teeth including resin composite which considered the most preserving approach in restoring teeth especially in large cavities.²

Polymerization shrinkage of resin composites especially in large cavities reduces the clinical performance of the restoration. Polymerization shrinkage results in stresses in in restoration tooth interface and in the tooth structure. Such polymerization shrinkage stresses is unfavorable as it leads to deformation of tooth walls, cuspal deflection and enamel cracks.³ Cuspal deflection leads to changes in the occlusion, cracks and tooth fracture. The cuspal deflection is affected by the shape and size of the cavity, polymerization shrinkage, placement technique, and the use of a flowable liner. Flexibility of the tooth increases as the size of the cavity increases. Also, large cavities require a greater bulk of composite material, which means more polymerization shrinkage stresses, thus more cuspal deflection. ⁴

Beside layering technique another method to reduce the polymerization shrinkage stresses is application of flowable resin composite as an intermediate layer, which can absorb polymerization shrinkage stresses produced by the subsequent layer of resin composite with higher modulus of elasticity, so can reduce the stress at the tooth-filling interface.⁵ The need for fast restoration process of deep cavities encouraged the new generation of flowable composites known as bulk fill flowable composites to appear in the