

Faculty of Science Ain Shams University Chemistry Department

Synthesis and Reactions of Some Heterocycles Containing Nitrogen and Sulphur of Anticipated Biological Activity

Thesis Submitted for Ph.D. Degree in Science Presented by

Nancy Abdel Gawad Hamed

M.Sc.(2005)

Under the Supervision of

Prof. Dr. Mahmoud. R. Mahmoud (The late)

Professor of Organic Chemistry
Chemistry Department, Faculty of Science, Ain Shams University.

Prof. Dr. Magda . I. Marzouk

Professor of Organic Chemistry

Chemistry Department, Faculty of Science, Ain Shams University.

Dr. Mahmoud. F. Ismail

Lecturer of Organic Chemistry

Chemistry Department, Faculty of Science, Ain Shams University

Dr. Mohamed. H. Hussein

Lecturer of Organic Chemistry
Chemistry Department, Faculty of Science, Ain Shams University

Department of Chemistry Faculty of Science Ain Shams University 2019

Faculty of Science
Ain Shams University
Chemistry Department

Name: Nancy Abdel Gawad Hamed Abdel Gawad

Scientific Degree : Ph.D. Degree in Science (Chemistry)

Department: Chemistry Department

Faculty : Faculty of Science

University: Ain Shams University

Year: 2019

ACKNOWLEDGMENTS "First of All, Thanks to Allah"

For the infinite helps and persistent supply with patience and efforts to accomplish this work successfully.

Deep thanks are due to Soul of **Prof. Mahmoud R. Mahmoud,** *Professor of Organic Chemistry, Faculty of Science, Ain Shams University*; I appreciate his vast knowledge and skills. Lucky me that he supervised my work and for choosing me as one of his students.

Also, I would like to express my deepest thanks and sincere gratitude to **Prof. Magda I. Marzouk**, *Professor of Organic Chemistry*, *Faculty of Science*, *Ain Shams University*; for her sincere guidance with encouragement, continuous interest, moral Support, sponsorship, constructive criticism and kind helps throughout this work.

Also, I am cordially indebted to **Dr. Mahmoud F. Ismael**, *Lecturer of Organic Chemistry, Faculty of Science*, *Ain Shams University*; to follow the progress of the work with keen interest and guidance, fruitful and helpful discussions during his direct supervision throughout this work.

Also, I am deeply appreciated to **Dr. Mohamed H. Hekal**, Lecturer of Organic Chemistry, Faculty of Science, Ain Shams University; to follow the progress of the work with keen interest and guidance, fruitful and helpful discussions during his direct supervision throughout this work.

I would also like to thank my Family, my friends, my Colleagues for exchanges of knowledge, skills, and venting of frustration during the research, which helped enrich the experience.

Nancy Abdel Gawad Hamed

To my parent soul,

I have to thank Allah for choosing both of you to be my parent and I hope to be with you in a good place in paradise.

To my Family,

Thanks, I will never can finish this work without your being near from me and your infinite support.

To my friends and Colleagues

Thank you for helping me, your help make me stronger to complete these work.

Nancy Abdel Gawad Hamed

CONTENT

Subject	Pages
Aaknovyladamant	
Acknowledgment	
Abstract	I-II
English Summary	i-x
Introduction:	
Introduction Part I	1-34
Introduction Part II	35-71
Discussion:	
Discussion Part I	72-94
Discussion Part II	95-128
Figures	129-250
Experimental	251-265
Reference	266-286
Arabic Summary	ت-ا

List of Tables:

Table	Page
Table 1. Cytotoxicity (IC ₅₀) of the tested compounds on	92
different cell lines	121
Table 2: Cytotoxicity of the chosen compounds toward (HepG2) and (HCT-116) cell lines.	121
	127
Table 3: Antimicrobial activity expressed as inhibition	125
diameter zones in millimeter (mm) of tested compounds	
against the pathogenically strains based on disc diffusion	
as assay.	
against the pathogenically strains based on disc diffusion as assay.	

List of Photo:

Photo	Page
Photo 1. Cytotoxicity (IC $_{50}$) of the tested compounds on	93
different cell lines.	
Photo. 2: Cytotoxicity of the chosen compounds toward	122
(HepG2) and (HCT-116) cell lines.	
Photo. 3: Antibacterial activity of compound 27 (A ₂).	127
Placed on disc in a media previously swabbed with Gram	
positive bacteri Bacillus subtilus (ATCC 6051) culture.	
Photo. 4: Antibacterial activity of compound 27 (A ₂).	127
Placed on disc in a media previously swabbed with Gram	
negative bacteria Klebsiella pneumoniae (ATCC 700603)	
culture.	

Photo. 5: Antibacterial activity of compound 27 (A ₂).	127
Placed on disc in a media previously swabbed with fungal	
strain Candida albicans (ATCC 10231) culture.	
Photo. 6: Antibacterial activity of compound 25 (A38)	128
and 26 (A_{32}) . Placed on disc in a media previously	
swabbed with fungal strain Aspergillus niger (ATCC	
16404) culture.	
Photo. 7: Antibacterial activity of compound 24b (A ₃₀)	128
and 24a (A_{50}) . Placed on disc in a media previously	
swabbed with Gram negative bacteria Klebsiella	
pneumoniae (ATCC 700603) culture.	
Photo. 8: Antibacterial activity of compound 24b (A ₃₀)	128
and 24a (A_{50}) . Placed on disc in a media previously	
swabbed with fungal strain Candida albicans (ATCC	
10231) culture.	

List if Figures

Figure	Page
Fig. 1: IR spectrum of compound 1	129
Fig. 2: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆) of compound	130
Fig. 3: ¹ H-NMR spectrum (DMSO-d ₆ +D ₂ O) of compound 1	131
Fig. 4: IR spectrum of compound 2	132
Fig. 5: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆) of compound 2	133
Fig. 6: ¹ H-NMR spectrum (DMSO- d_6 +D ₂ O) of compound 2	134
Fig. 7: Mass spectrum of compound 2	135
Fig. 8: IR spectrum of compound 3	136
Fig. 9: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆) of compound 3	137
Fig. 10: ¹ H-NM spectrum (DMSO- <i>d</i> ₆ +D ₂ O) of compound 3	138
Fig. 11: Mass spectrum of compound 3	139
Fig. 12: IR spectrum of compound 4	140
Fig. 13: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆) of compound 4	141
Fig. 14: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆ +D ₂ O) of compound 4	142
Fig. 15: Mass spectrum of compound 4	143
Fig. 16: IR spectrum of compound 5	144
Fig. 17: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆) of compound 5	145
Fig. 18: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆ +D ₂ O) of compound 5	146
Fig. 19: Mass spectrum of compound 5	147
Fig. 20: IR spectrum of compound 6	148
Fig. 21: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆) of compound 6	149
Fig. 22: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆ +D ₂ O) of compound 6	150
Fig. 23: Mass spectrum of compound 6	151
Fig. 24: IR spectrum of compound 8	152
Fig. 25: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆) of compound 8	153
Fig. 26: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆ +D ₂ O) of compound 8	154
Fig. 27: Mass spectrum of compound 8	155
Fig. 28: IR spectrum of compound 9	156
Fig. 29: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆) of compound 9	157
Fig. 30: ¹ H-NMR spectrum(DMSO- d_6 +D ₂ O) of compound 9	158
Fig. 31: Mass spectrum of compound 9	159
Fig. 32: IR spectrum of compound 12	160
Fig. 33: ¹ H-NMR spectrum (DMSO- <i>d</i> ₆) of compound 12	161