

"Synthesis and Evaluation of Some New Surfactants Based on Natural Material"

A Thesis Submitted for Degree of Ph.D. in Chemistry

By

Eman Abdalrahman Fathy Abdalgaleel

(M.Sc. Organic Chemistry)

To
Chemistry Department, Faculty of Science
Ain Shams University, Cairo, Egypt

Supervised by

Prof. Dr. Elsayed A. Soliman

Prof. of Organic Chemistry
Chemistry Department, Faculty of Science,
Ain Shams University

Prof. Dr. Ismail A. Aiad

Prof. of Applied Chemistry
Petrochemicals Department,
Egyptian Petroleum Research Institute

Assoc. Prof. Dalia E. Mohamed

Assoc. Prof. of Organic Chemistry
Petrochemicals Department
Egyptian Petroleum Research Institute

Faculty of Science Chemistry Department

"Synthesis and Evaluation of Some New Surfactants Based on Natural Material"

A Thesis Submitted for Degree of Ph.D. in Organic Chemistry

By
Eman Abdalrahman Fathy Abdalgaleel

(M.Sc. Organic Chemistry)

ToChemistry Department, Faculty of Science
Ain Shams University, *Cairo*, *Egypt*

Supervised by

Prof. Dr. Elsayed A. Soliman

Prof. of Organic Chemistry
Chemistry Department, Faculty of
Science, Ain Shams University

Prof. Dr. Ismail A. Aiad

Prof. of Applied Chemistry
Petrochemicals Department,
Egyptian Petroleum Research Institute

Assoc. Prof. Dalia E. Mohamed

Assoc. Prof. of Organic Chemistry
Petrochemicals Department
Egyptian Petroleum Research Institute

Head of Chemistry Department

Prof.Dr. Ayman Ayoub Abdel-Shafi

Name : Eman Abdalrahman Fathy Abdalgaleel

Science Degree: M.Sc.

Department: Chemistry

College : Faculty of Science

University : Zagazig University

M.Sc : 2013

Acknowledgement

First, I would like to thank "Allah" for giving me the chance and the strength to accomplish this work.

I would like to express my deepest gratitude, appreciation and respect to:

Prof. Dr. Elsayed A. soliman, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University for his continuous valuable supervision, ongoing assistance and advice throughout this work.

Prof. Dr. Ismail A. Aiad, Professor of Applied Chemistry, Petrochemicals Department, Egyptian Petroleum Research Institute (EPRI), for his direct supervision, valuable discussions and continuous encouragement during all phases of this work. I am grateful for his advices.

Dr. Dalia E. Mohamed, Associate Professor, Petrochemicals Department, Egyptian Petroleum Research Institute, for her advice, supervision, valuable discussions, for her valuable cooperation in performing the experimental work. I am grateful for the time and efforts taken by her to read and correct the written materials and for her gentle treatment. She has supported me in every possible way since the beginning of

my research. Without her guidance and encouragement, my research would have never come out in the present form.

Dr. Emad A. Badr, Associate Professor, Petrochemicals department, Egyptian Petroleum Research Institute (EPRI), for his valuable cooperation in performing the experimental work his valuable discussion and revision in writing. I am grateful for his advices and valuable discussions.

I also extend my gratitude to my lab mates, my colleagues who helped create a warm and friendly environment where I worked. I am indebted to all the members of Surface Active Agents Lab., Petrochemicals Department, (EPRI) Egyptian Petroleum Research Institute, especially for Prof.Dr. ElShafie A.M.Gad for helping me in the quantum chemical calculations part.

Aim of the work

This work is aimed to prepare different series of cationic surfactants based on natural material (Cinnamaldehyde, Cinnamic acid and Caffeic acid), elucidate their chemical structures, evaluate their surface activity and finally, apply them as corrosion inhibitors in oil fields. So, the main target of this thesis can be summarized as follows:

- 1. <u>Preparation</u> of cationic surfactants based on three compounds having natural source in plant kingdom (Cinnamaldehyde, Cinnamic acid and Caffeic acid) to obtain the following
 - N,N-dimethyl-N-(2-((3-phenylallylidene)amino)ethyl)decan-1-aminiumbromide (**Ia**)
 - N,N-dimethyl-N-(2-((3-phenylallylidene)amino)ethyl)dodecan-1-aminiumbromide (**Ib**)
 - N,N-dimethyl-N-(2-((3-phenylallylidene)amino)ethyl)hexadecan-1-aminiumbromide (**Ic**)
 - N-(2-(cinnamoyloxy)ethyl)-N,N-dimethyldecan-1-aminium bromide (IIa)
 - N-(2-(cinnamoyloxy)ethyl)-N,N-dimethyldodecan-1-aminium bromide (IIb)
 - N-(2-(cinnamoyloxy)ethyl)-N,N-dimethylhexadecan-1-aminium bromide (**Hc**)
 - (E)-N-(2-((3-(3,4-dihydroxyphenyl)acryloyl)oxy)ethyl)-N,N-dimethyldecan-1-aminium (**IIIa**)

- (E)-N-(2-((3-(3,4-dihydroxyphenyl)acryloyl)oxy)ethyl)-N,N-dimethyldodecan-1-aminium (**IIIb**)
- (E)-N-(2-((3-(3,4-dihydroxyphenyl)acryloyl)oxy)ethyl)-N,N-dimethylhexadecan-1-aminium (**IIIc**)
- **2.** <u>Confirmation</u> of the chemical structures of the synthesized compounds using FTIR, ¹H-NMR.
- **Determination** of the surface properties for the prepared surfactants and their surface parameters including surface tension, maximum surface excess, efficiency, critical micelle concentration, effectiveness, and minimum surface area.
- **Evaluation** of the prepared surfactants as corrosion inhibitors for carbon steel in 1M HCl solution using different techniques:
 - Weight Loss Technique
 - Potentiodynamic polarization method
 - Electrochemical impedance spectroscopy (EIS)
- **Determination** of quantum chemical parameters using Density Functional Theory (DFT) to correlate the experimental work to the quantum chemical calculations.

Abstract

Title: "Synthesis and Evaluation of Some New Surfactants Based on Natural Material".

By

Eman Abdalrahman Fathy Abdalgaleel

Chemistry Department, Faculty of Science, Ain Shams University

Degree: Doctor of Philosophy in Organic Chemistry,

Faculty of Science, Ain Shams University, 2019.

Most of research activities interested in developing cheap, non-toxic and environmentally safe corrosion inhibitors. In this work, we focused on preparing new cationic surfactants based on cinnamaldehyde, cinnamic acid and caffeic acid which have natural source in the plant kingdom. The synthesis of the first category is carried out by two steps, The first is the condensation reaction of cinnmaldehyde with N. N-Dimethylethylenediamine in ethanol for six hours, then quaternization of the prepared Schiff base with (decyl, dodecyl and hexadecyl) bromide for 48 hours in ethanol to give products (Ia), (Ib) and (Ic) with different chain length 10, 12 and 16, respectively.

The synthesis of the two categories from cinnamic and caffeic acid is carried out by esterification of these two acids with N, N-Dimethyl ethanolamine in xylene. The prepared esters 2-(dimethylamino)ethyl cinnamate/caffeate were quaternized with each of (decyl, dodecyl and hexadecyl) bromide for 48 hours in ethanol to give products (**IIa**), (**IIb**) and (**IIc**) with chain length

10, 12 and 16, respectively for cinnamate derivatives. While products (IIIa), (IIIb) and (IIIc) with chain length 10, 12 and 16, respectively are for caffeate derivatives. The chemical structures of the prepared cationic surfactants were confirmed using FTIR and ¹H-NMR spectra. The surface activity for the prepared surfactants has been studied and their surface parameters including surface tension, maximum surface excess, efficiency, critical micelle concentration, effectiveness, and minimum surface area were determined. The length of the hydrophobic chain has an effect on their surface activity as the surface tension decreases considerably by increasing their concentration and hydrophobic chain length. The prepared cationic surfactants were applied as corrosion inhibitors. The corrosion inhibition efficiency of these compounds in 1 M Hydrochloric acid on carbon steel was investigated chemically using weight loss method at different temperatures (30, 45, and 60°C) and electrochemically at 30°C using potentiodynamic polarization measurements and electrochemical impedence spectroscopy. The results reveal that, the prepared compounds I (a-c), II (ac), III (a-c) behave as mixed type corrosion inhibitors, have significant inhibiting effect on the corrosion of carbon steel, their inhibition efficiency increased with increasing their concentration, hydrophobic chain length and the temperature. The adsorption of the studied surfactant molecules on the steel surface in Hydrochloric acid solution obeys the Langmuir adsorption isotherm. The experimental data is correlated to the theoretical calculations of quantum chemical parameters using Density Functional Theory (DFT) in order to distinguish the reactive places interacting with steel surface through the adsorption of these compounds.

. <u>Key words:</u> caffeic acid; cinnamaldehyde; cinnamic acid; cationic surfactants; corrosion inhibitors and Langmuir isotherm.

List of Contents

Topic	Page
Aim of the work	
Abstract	
Chapter 1: Introduction	
1. General introduction	1
2. Surfactants	4
2.1. Introduction to surfactant	4
2.2. Properties of surfactants	5
2.2.1. Adsorption	6
2.2.2. Micellization	7
2.3. Surfactants as corrosion inhibitors	10
2.4. Other applications of surfactants	12
2.4.1. Detergency	12
2.4.2. Surfactants as emulsifying agents	13
2.4.3. Food industry	13
2.4.4. Pharmaceutical Industry	14
2.4.5. Petroleum Industry	14
2.5. Classification of surfactants	15
2.5.1. Nonionic Surfactants	16
2.5.2. Anionic Surfactants	17
2.5.3. Cationic Surfactants	19
2.5.4. Zwitterionic Surfactants	20
2.6. Molecular assemblies of surfactants	20
3. Corrosion.	23
3.1. Definition.	23
3.2. Chemistry of corrosion.	23

Contents

3.3. Types of corrosion damage	25
3.4. Forms of corrosion	25
3.5. Corrosion protection	27
3.6. Corrosion Inhibitors	28
3.6.1. Classification of inhibitors	23
3.6.1.1. Anodic inhibitors	29
3.6.1.2. Cathodic inhibitors	29
3.6.1.4. Mixed inhibitors	30
3.6.1.5. Volatile corrosion inhibitors	30
3.6.1.6. Precipitation inhibitors	31
3.6.2. Factors influencing the efficiency of corrosion inhibitors	31
4. Quantum chemistry	32
Review of literature	33
Chapter 2: Experimental Work	
1. Chemicals	44
2. Instruments	45
2.1. Fourier Transform Infrared Spectrometer (FTIR)	45
2.2. Proton Nuclear Magnetic Resonance (¹ HNMR)	45
2.4. Tensiometer	45
2.5. Potentiostate	45
2 Cymthodia	45
5. Synthesis	
	45
3.1. Synthesis of imine cationic surfactants based on Cinnamaldehyde	
3.1. Synthesis of imine cationic surfactants based on Cinnamaldehyde 3.1.1. Schiff Base Preparation	45
3.1. Synthesis of imine cationic surfactants based on Cinnamaldehyde 3.1.1. Schiff Base Preparation	45 46
3.1. Synthesis of imine cationic surfactants based on Cinnamaldehyde 3.1.1. Schiff Base Preparation	45 46 46
3. Synthesis 3.1. Synthesis of imine cationic surfactants based on Cinnamaldehyde 3.1.1. Schiff Base Preparation	45 46 46

Contents

4. Measurements	48
4.1. Surface Tension Measurements (γ)	48
4.2. Corrosion measurements	50
4.2.1. Weight loss measurements	50
4.2.2. Potentiodynamic polarization method	52
4.2.3. Electrochemical impedance spectroscopy (EIS)	53
4.3. Computational Methodology	55
Chapter 3: Results and discussion	
3.1. Synthesis	56
3.2. Structure confirmation	61
3.2.1. Fourier Transform Infrared spectra (FTIR)	61
3.2.2. Proton nuclear magnetic resonance (¹ H-NMR)	68
3.3. Surface parameters for the prepared cationic surfactants	74
3.3.1. Surface tension (γ)	74
3.3.2. Critical micelle concentration (CMC)	79
3.3.2. Effectiveness (π_{cmc})	81
3.3.4. Efficiency (Pc ₂₀)	81
3.3.5. Maximum surface excess (Γ_{max})	82
3.3.6. Minimum surface area (A _{min})	84
3.4. Corrosion measurements	86
3.4.1. Weight loss measurements	86
3.4.1.1. Effect of concentration of the inhibitors	86
3.4.1.2. Effect of hydrophobic chain length	87
3.4.1.3. Effect of hydrophilic group (head group)	87
3.4.1.4. Effect of Temperature	88
3.4.2. Potentiodynamic polarization measurements	105
3.4.3. Electrochemical impedance spectroscopy (EIS)	70

Contents

3.5. Adsorption isotherm and standard adsorption free energy	78
3.6. Activation energy	
3.7. Mechanism of corrosion inhibition	153
3.8. Quantum chemical calculations	
Summary and conclusions	
References	174
Arabic summary	

List of Figures

Figure	Title	Page
No.		
1	Schematic illustration of a surfactant	4
2	Effect of surfactant on the surface tension	5
3	Surfactants adsorption at the surface	7
4	Plot of surface tension versus log conc. showing cmc	8
5	Adsorption of surfactant on steel surface	11
6	Surfactants classification according to the composition	
	of their head	16
7	Schematic representations of organized aggregates	
	that may form in aqueous solution of surfactant	
	depending on the concentration	22
8	Corrosion process on metal surface	24
9	Standard electrochemical cell	54
10	The working electrode	54
11	FTIR spectra of the prepared cationic surfactants (Ia),	
	(Ib) and (Ic)	65
12	FTIR spectra of the prepared cationic surfactants	
	(IIa), (IIb) and (IIc)	66
13	FTIR spectra of the prepared cationic surfactants	
	(IIIa), (IIIb) and (IIIc)	67
14	¹ H-NMR spectra of the prepared cationic surfactants	
	(Ia), (Ib) and (Ic)	71
15	¹ H-NMR spectra of the prepared cationic surfactants	
	(IIa), (IIb) and (IIc)	72
16	¹ H-NMR spectra of the prepared cationic surfactants	

	(IIIa), (IIIb) and (IIIc)	73
17	Variation of the surface tension with log conc. for the	
	prepared surfactants (Ia, Ib and Ic) at room	
	temperature	76
18	Variation of the surface tension with log conc. for the	
	prepared surfactants (Ha, Hb and Hc) at room	
	temperature	76
19	Variation of the surface tension with log	
	concentrations for the prepared surfactants (IIIa, IIIb	
	and IIIc) at room temperature	77
20	The relation between corrosion inhibition efficiency of	
	carbon steel and logarithm of the concentration of the	
	inhibitors (Ia, Ib and Ic)	93
21	The relation between temperature and the inhibition	
	efficiency of the prepared inhibitors (Ia, Ib and Ic) at	
	different concentrations obtained by weight loss	
	method for carbon steel in 1.0 M HCl	94
22	The relation between corrosion inhibition efficiency of	
	carbon steel and logarithm of the concentration of the	
	inhibitor (IIa, IIb and IIc)	98
23	The relation between temperature and the inhibition	
	efficiency of the prepared inhibitors (IIa, IIb and IIc)	
	at different concentrations obtained by weight loss	
	method for carbon steel in 1.0 M HCl	99
24	The relation between corrosion inhibition efficiency of	
	carbon steel and logarithm of the concentration of the	
	inhibitor (IIIa, IIIb and IIIc)	103
25	The relation between temperature and the inhibition	