

Department of Geology

STRUCTURAL AND RADIOMETRIC STUDIES OF UM GURUF AREA, NORTH EASTERN DESERT, EGYPT

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master in Science in Geology

By

MAHMOUD MOHAMMED SALEM MAHMOUD

(B. Sc. Geology - 2013) Nuclear Materials Authority

Supervised by

Prof. Dr. Ali Farrag Osman

Prof. of Igneous and Metamorphic Rocks Geology Department, Faculty of Science Ain Shams University Prof. Dr. Falham Oraby Mahmoud

Prof. of Geology Production Sector Nuclear Materials Authority

Dr. Hamed Mohamed Dowidar

Lecturer of Structural Geology Geology Department, Faculty of Science Ain Shams University

To

Geology Department
Faculty of Science, Ain Shams University
Cairo - (2019)

Department of Geology

M. Sc. Thesis in Science in Geology

Title: Structural and Radiometric Studies of Um Guruf Area, North

Eastern Desert, Egypt

By: Mahmoud Mohammed Salem Mahmoud

Supervision Committee

Prof. Dr. Ali Farrag Osman

Professor of Geology - Ain Shams University

Prof. Dr. Falham Oraby Mahmoud

Professor of Geology - Nuclear Materials Authority

Dr. Hamed Mohamed Dowidar

Lecturer of Geology - Ain Shams University

Examiners Committee

Prof. Dr. Mahmoud Mohammed Hassaan

Professor Emeritus of Geology - Al-Azhar University

Prof. Dr. Zakaria Elsayed Hamimi

Professor of Geology - Benha University

Prof. Dr. Ali Farrag Osman

Professor of Geology - Ain Shams University

Prof. Dr. Falham Oraby Mahmoud

Professor of Geology - Nuclear Materials Authority

Date of Examination: 2 / 11 / 2019

Department of Geology

STRUCTURAL AND RADIOMETRIC STUDIES OF UM GURUF AREA, NORTH EASTERN DESERT, EGYPT

Name: Mahmoud Mohammed Salem Mahmoud

Scientific degree: Master in Science in Geology

Department: Geology

Faculty: Science

University: Ain Shams

NOTE

The present thesis is submitted to the Geology Department, Faculty of Science, Ain Shams University in partial fulfillment of the requirements for the Master degree of Science in Geology. Beside the research work materialized in this thesis, the candidate *Mahmoud Mohammed Salem Mahmoud* has attended five post-graduate courses for one year in the following topics:

- 1. Field Geology and Geostatistics
- 2. Advanced Lithostratigraphy and Biostratigraphy
- 3. Photogeology and Geomorphology
- 4. Sedimentary rocks and Sedimentation
- 5. Advanced Structural Geology and Geotectonics

He has successfully passed the final exam in the above mentioned courses, besides an English language course.

Prof. Dr. Ashraf Rushdi Mohamed Baghdady

Head of Geology Department

Faculty of Science

Ain Shams University

FOR IMY FAMILY

ACKNOWLEDGEMENTS

Praise be to *Allah*, Lord of the worlds, by whose grace this work has been completed.

The author is very grateful and thankful to the *Geology Department, Faculty of Science, Ain Shams University* for the great help and facilities offered during the preparation of this work.

My great thanks to *Nuclear Materials Authority*, especially *Prof. Dr. H. I. Mera*, Chairman of the Nuclear Materials Authority, for providing all field and laboratory facilities during the work.

Very special thanks go to *Prof. Dr. A. F. Osman* and *Dr. H. M. Dowidar*, Geology Department, Faculty of Science, Ain Shams University for their kind supervision, continuous help, useful discussions, valuable advices and critically reading the manuscript.

My deep thanks to *Prof. Dr. F. O. Mahmoud*, Nuclear Materials Authority, for his kind supervision, constant guidance and suggestions during his revision.

The author wishes to express his gratitude and deep appreciation to *Assoc. Prof. H. I. El Sundoly* and *Dr. A. M. Abd El Hadi* for their continuous help and valuable advices.

Great thanks to my colleague' geologist, *M. A. Ibrahim* for his efforts during the filed works and valuable discussions.

Many thanks are due to *all members of the mining administration*, Nuclear Materials Authority, for their continuous help and encourage and saving time for me to finish this work.

Finally, I'd like to express my sincere thankfulness to *my family* for the support and encouragement during this work.

ABSTRACT

The present work aims to study the geology, structure and radioactivity of Um Guruf area to finding the relationships between structural and lithological features with the radioactive mineralizations. Um Guruf area is located in the North Eastern Desert covering an area of about 275 km². It includes Neoproterozoic basement rocks of older granitoids (oldest), Dokhan volcanics, Hammamat sedimentary rocks, younger granites and post granite dykes (youngest).

The older granitoids in the study area are mainly represented by granodiorite, which is intruded by younger granites and post granite dykes. Dokhan volcanics are widely distributed in the study area represented by acidic and intermediate lava flows and their associated pyroclastics of tuffs and agglomerates. The Hammamat sedimentary rocks are unconformably overlying the Dokhan volcanics composed of bedded series of conglomerates, breccias, greywackes, sandstones and siltstones with some bands of purple slates. Younger granites represent the main rock type in the present area. They are classified into syeno-to alkali feldspar granites and alkali feldspar granites. They intrude all the previous rock types and are cut by post granite dykes and veins. Post granite dykes are represented by acidic, intermediate and basic types. They cut all the previous rock types with NE-SW and ENE-WSW trends.

The study area is subjected to tectonic events displaying structural features, mainly represented by faults and joints. Faults are represented by strike slip type with some normal and reverse faults. The common fault trends based on their number proportions are NW-SE, NNW-SSE and NE-SW, while based on their length proportions are NNE-SSW and ENE-WSW. The main trends of joints are NE-SW, ENE-WSW, E-W and N-S. The recorded faults

are of compression stresses, while the recorded joints are of tension stresses. The NE-SW is the master trend in the study area controlling the structural and tectonic framework of the area followed by ENE-WSW trend, while the least common trends are NNW-SSE, N-S, NW-SE and WNW-ESE.

The radioactivity in the younger granites is higher than that of other older rocks. The radioactive anomaly is recorded in zoned pegmatite pocket in Hmrat El Sorwhyia alkali feldspar granites. It is structurally controlled by two hematized faults trending NNW-SSE and WNW-ESE and by two strongly hematized and silicified joints striking NNE-SSW and NW-SE. It is controlled by lithology containing U and Th-bearing minerals of uranophane, thorite and zircon in addition to apatite, sphene and iron oxides which capture U and/or Th elements.

CONTENTS

Content	
LIST OF TABLES	vi
LIST OF FIGURES	viii
CHAPTER ONE: INTRODUCTION	
1.1. Location and Accessibility	1
1.2. Topography	1
1.3. Climate and Vegetation	5
1.4. General review on the basement rocks of Egypt	5
1.5. Previous works on the study area and Its Environs	10
1.6. Aim of the present study	16
1.7. Methodology	16
CHAPTER TWO: GEOLOGICAL SETTING	
2.1. Older Granitoids	18
2.2. Dokhan Volcanics	22
2.3. Hammamat Sedimentary Rocks	25
2.4. Younger Granites	29
2.4.1. Syeno-to alkali feldspar granites	29
2.4.2. Alkali feldspar granites	33
2.5. Post granite dykes	34
2.5.1. Acidic dykes	34
2.5.2. Intermediate dykes	35
2.5.3. Basic dykes	37
2.6. Wadi deposits	37
CHAPTER THREE: STRUCTURAL ANALYSIS	
3.1. Primary structures	38
3.1.1. Bedding and Lamination (S_0)	38
3.1.2. Flow structures	40
3.1.3. Vesicular structures	41

3.2. Secondary structures	41
3.2.1. Foliation (S ₁)	41
3.2.2. Pencil structures	42
3.2.3. Faults	42
3.2.3.1. NW-SE trend	46
3.2.3.2. NNW-SSE trend	53
3.2.3.3. NE-SW trend	53
3.2.3.4. NNE-SSW trend	54
3.2.3.5. ENE-WSW trend	55
3.2.3.6. N-S trend	56
3.2.3.7. WNW-ESE trend	56
3.2.3.8. E-W trend	57
3.2.3.9. Stress analysis of the major recorded faults	59
3.2.3.9.1. The first phase	59
3.2.3.9.2. The second phase	59
3.2.4. Folds	59
3.2.5. Joints	61
3.2.5.1. Joints in Granodiorites	61
3.2.5.2. Joints in Dokhan Volcanics	64
3.2.5.3. Joints in Hammamat Sedimentary Rocks	66
3.2.5.4. Joints in Younger Granites	68
3.3. Post granite dykes and veins	72
3.3.1. Acidic dykes	72
3.3.2. Intermediate dykes	75
3.3.3. Basic dykes	75
3.3.4. Aplite veins	75
3.3.5. Quartz veins	76
3.4. Surface lineament analysis	76
3.4.1. Part I	78
3.4.2. Part II	78
3.4.3. Part III	81
3.4.4. Part IV	81

3.5. Correlation between total faults, total joints, total	
dykes and total surface lineaments	8
CHAPTER FOUR: PETROGRAPHY	
4.1. Older Granitoids	8
4.2. Dokhan Volcanics	9
4.2.1. Lava flows	9
4.2.1.1. Intermediate lava flows	9
4.2.1.1.1. Porphyritic andesite	9
4.2.1.1.2. Trachy andesite	9
4.2.1.1.3. Basaltic andesite	9
4.2.1.2. Acidic lava flows	9
4.2.1.2.1. Dacite	9
4.2.1.2.2. Rhyodacite	9
4.2.1.2.3. Rhyolite	9
4.2.2. Pyroclastics	9
4.2.2.1. Acidic lithic crystal tuffs	9
4.2.2.2. Intermediate lithic crystal tuffs	9
4.2.2.3. Welded tuffs (Ignimbrites)	9
4.2.2.4. Andesitic agglomerates	10
4.3. Hammamat Sedimentary Rocks	10
4.3.1. Conglomerates and breccias	10
4.3.2. Greywackes	10
4.3.3. Sandstones	10
4.3.4. Siltstones	10
4.3.5. Purple slates	10
4.4. Younger Granites	10
4.4.1. Hmrat El Sorwhyia granites	10
4.4.1.1. Hmrat El Sorwhyia syeno granites	10
4.4.1.2. Hmrat El Sorwhyia alkali feldspar granites	1(
4.4.2. G. El Resha and G. Al Hamra alkali feldspar	
granites	10
4.5. Post granite dykes	1

4.5.1. Acidic dykes	112
4.5.1.1. Granite porphyry dykes	112
4.5.1.2. Granophyre dykes	114
4.5.1.3. Rhyolite dykes	115
4.5.1.4. Dacite dykes	115
4.5.2. Intermediate dykes	116
4.5.2.1. Andesite dykes	116
4.5.3. Basic dykes	118
4.5.3.1. Dolerite dykes	118
4.5.3.2. Basalt dykes	119
•	
CHAPTER FIVE: MINERALOGY OF THE YOUNGER	
GRANITES	
5.1. Methodology	120
5.2. Heavy minerals identification	121
CHADTED CIV. DADIOA CTIVITY	
CHAPTER SIX: RADIOACTIVITY	137
6.1. Radiometric investigations	
6.1.1. Field measurements.	137
6.1.2. Analytical measurements	137
6.2. Distribution of total gamma radioactivity and	120
radioelement concentrations in the studied rock types	139
6.2.1. Granodiorites	139 148
	148
6.2.3. Hammamat Sedimentary Rocks	150
6.2.4. Younger Granites	151
6.2.4.1. Syeno-to alkali feldspar granites	152
6.2.4.2. Alkali feldspar granites	
6.2.5. Pegmatites	157
6.2.6. Acidic dykes	158
6.2.7. Intermediate dykes	159
6.2.8. Basic dykes	159 161
0.7. 9 . Addite veins	INI

(2.10, 0,	1.00
6.2.10. Quartz veins	162
6.3. Radioactive equilibrium	162
6.4. Favorability of radioelements in the studied rock types.	165
6.4.1. Radioelement favorable areas	165
6.4.2. Effect of the rock alteration on the uranium	
mobilization and favorability	168
6.5. Radioactive anomaly	169
6.6. Radioactivity relationships	171
6.6.1. Structural control of gamma radioactivity	
distribution	171
6.6.2. Lithological control of gamma radioactivity	
distribution	174
CHAPTER SEVEN: SUMMARY AND CONCLUSIONS	175
REFERENCES	182
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
Table 1.1.	Some classifications of basement rocks of Egypt	9
Table 3.1.	Frequency distribution of 90 faults recorded in the study area	47
Table 3.2.	The detailed characteristic features of 90 faults recorded in the study area	50
Table 3.3.	Frequency distribution of the main trends of 1103 joints measured in the various rock types of the study area	62
Table 3.4.	Frequency distribution of different dykes and veins measured in the study area	73
Table 3.5.	Surface lineaments recorded in the study area	79
Table 3.6.	Frequency distribution of 4338 Surface lineaments recorded in the study area	79
Table 3.7.	Frequency distribution of recorded total faults, total joints, total dykes and total surface lineaments in the study area	83
Table 4.1.	The modal analysis of the studied granitic rocks of Um Guruf area	87
Table 6.1.	Statistical analyses of field gamma radioactivity measurements of the study area	140
Table 6.2.	Radiometric analytical measurements of representative samples collected from various rock types of the study area	143

Table 6.3.	Calculated average contents of U, Th and their Th/U ratio of the various rock types of the study area compared with that of some rock types	149
Table 6.4.	Favorability indices of radioelements in the studied rock types.	166
Table 6.5.	Radiometric analytical measurements of four samples collected from the anomalous pegmatite in the study area	173