AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Mechanical Power Engineering

Thermo-economic driven planning of resource-efficient district combined cooling and power

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Mechanical Power Engineering)

by

Mohamed Atef Mohamed Kamel Ahmed

Bachelor of Science in Mechanical Engineering
(Mechanical Power Engineering)
Faculty of Engineering, Ain Shams University, 2016
Supervised By

Prof. Mahmoud Mohamed Abo ElNasr
Dr. Amr Yehia Hussien Elbanhawy

Cairo - (2019)

Thermo-economic driven planning of resource-efficient district combined cooling and power

by

Mohamed Atef Mohamed Kamel Ahmed

Bachelor of Science in Mechanical Engineering
(Mechanical Power Engineering)
Faculty of Engineering, Ain Shams University, 2016

Examiners' Committee

Name and Affiliation	Signature
Prof. Mohamed AbdulFatah Teama	
Mechanical Power, Alexandria University	
Prof. Adel Abdul Malek Elahwany	
Mechanical Power, Ain Shams University	
Prof. Mahmoud Mohamed Abo El-Nasr	
Mechanical Power, Ain Shams University	
Dr. Amr Yehia Hussien Elbanhawy	
Mechanical Power, Ain Shams University	

Date:25 July 2019

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Mechanical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Mohamed Atef Mohamed

Signature

Mohamed Atef Mohamed

Date:15 September 2019

Researcher Data

Name : Mohamed Atef Mohamed Kamel Ahmed

Date of birth : 16/12/1992

Place of birth : Cairo

Last academic degree : Bachelor's Degree of Mechanical engineering

Field of specialization : Mechanical Engineering

University issued the degree : Ain Shams University

Date of issued degree : 07/2016

Abstract

Trigeneration energy systems have gathered considerable attention from energy specialists and energy economists. When adequately designed, trigeneration systems reduce the overall cost of energy production and lower the carbon footprint for every energy unit generated. However, their implementation in the buildings' industry faced many obstacles such as the inefficient sizing of their capacities, and their sub-optimal operational scheduling, which have led to high investment and operational costs compared to conventional systems.

Accordingly, an optimization tool has been modeled to find optimal planning, sizing and scheduling of trigeneration systems. The tool is used in decision-making process in all project phases. This is done by applying the energy hub concept under the constraints of maximizing a formulated combined efficiency that contains annualized total cost saving ratio (ATCSR), exergy efficiency (EXEff), fuel saving ratio (FSR) and carbon dioxide reduction ratio (CO2RR) using a weighing factor method. This is made by comparing each indicator to a conventional system in GAMS. Moreover, economical parameters (net present value, internal rate of return and payback period) are used to guarantee proper decision-making process. Using part load effect and variable capital costs of components to simulate the real case, the tool provides optimal planning, sizing and scheduling of all trigeneration systems.

Three case studies have been adopted in this thesis as direct applications for the optimization tool. One of them has dealt with the quantification of error resulting from using simple (constant efficiency) and linearized models for simplicity instead of part load (variable efficiency) models which simulate the real case and to what extent this approximation is valid and whether it should be used in future studies or not. A novel contribution has been presented to compare between both models which the Root Mean Square Difference (RMSD). It depends on the deviations of the combined efficiency the economic parameters. Results assured the importance of using part load models in future studies to guarantee more accuracy as deviations of results between both models can't be neglected.

The second one has dealt with the intervention of solar energy components such as: solar thermal collectors (SCs) and photovoltaics (PVs) into optimized trigeneration system by comparing a solar energy optimized trigeneration system to an optimized trigeneration system with no solar energy utilization. This thesis provides a system-comparison methodology to compare such systems. This optimal system-comparison gives a complete picture on the real effect of adding any solar component to a trigeneration system because it gives the solar system the freedom for more intervention with the system resulting in more enhanced performance. Results assured the importance of comparing energy systems based on the system-comparison methodology. Moreover, they came up with the conclusion that reducing the capital costs of solar energy systems will facilitate their deployment in future energy systems as they already prove their ability to increase overall combined efficiency of energy systems by decreasing the fuel used and emission produced.

The third one has dealt with the concept of Hybrid photovoltaic/ thermal collectors (PV/Ts) technology after they have evolved as a translation to the typical idea of the trigeneration because they produce both heat and electricity simultaneously with the same area decreasing the footprint needed by side-by-side photovoltaics (PVs) and solar thermal collectors (SCs). A methodology of

real system-level comparison is presented in contrary to component-level comparisons that are available in the open literature. This methodology depends on comparing an optimized Solar-CCHP system with side-by-side PVs and SCs, against a PVT-CCHP with hybrid photovoltaic/thermal collectors (PV/Ts) instead under a constrained area. Results came up with the conclusion that using PV/Ts instead of side-by-side PVs and SCs will yield higher combined efficiency but with lower Net Present Value (NPV) at normal price mode but with increasing the selling prices of sold electricity, PV/Ts are favorable due to higher combined efficiency and Net Present Value (NPV).

Keywords

Difference

Part load

Simple model

Trigeneration

Multi-objective

Optimization

Energy hub

Photovoltaics

Solar Thermal collectors

CCHP

Solar-CCHP

Comparison

Optimization

Hybrid photovoltaic/thermal collectors

Exergy

Key Performance Indicators (KPIs)

Acknowledgements

First and foremost, I would like to thank God Almighty for giving me the strength, knowledge, ability and opportunity to undertake this research study and to persevere and complete it satisfactorily. Without his blessings, this achievement would not have been possible. I would like to thank my family (father, mother and sister) for their care and help throughout this journey. I would like to thank my life partner and my wife for her support and tremendous help. I couldn't have been here without all of you. God bless all of you.

I would like to thank my thesis advisors Professor Mahmoud Abo El Nasr and Doctor Amr Elbanhawy. They are true gentlemen and I am proud that I have met them in my career. Their doors were always open whenever I ran into a trouble or had a question about my research or writing. They consistently allowed this thesis to be my own work but steered me in the right the direction whenever they thought I needed it and I am gratefully indebted to them for their very valuable comments on this thesis.

I hope this work would help in developing the world and be a good reference for energy specialists.

List of Abbreviations

SSP TOU

TSF

AC	absorption chiller	Subscripts	
ATCSR	annualized total cost saving ratio	ac	absorption chiller
Cap	capital cost, \$	ACin	input heat to AC, kWh
CCHP	combined cooling, heating and power	ACN	rated capacity of absorption chiller,
CHP	combined heating and power	kW	raice cupulity of accorption context,
cload(t)	cooling load at time t, kW	amb	ambient temperature, K
CO2RR	carbon dioxide reduction ratio	cell	cell temperature, K
COP	coefficient of performance	ec	vapor compression chiller
CRF	capital recovery factor	ECN	rated capacity of vapor compression
EC	vapor compression chiller	LCIV	chiller, kW
	cost of producing CCHP-electricity,	ah	gas boiler
ecost	1	gb GBN	•
-11(4)	\$/Kw		rated capacity of gas boiler, kW
eload(t)	electrical load at time t, kW	grid	grid parameters
ESF	electrical solar fraction	he	heat exchanger
ESP	CCHP-electricity selling price, \$/kW	HEN	rated capacity of heat exchanger, kW
EXEff	exergetic efficiency	hr	heat recovered from HRSG, kWh
FHL	following hybrid load operating	HRN	rated capacity of HRSG, kW
	strategy	ice	internal combustion engine
FSR	fuel saving ratio	ICEN	rated capacity of ICE, kW
GAMS	general algebraic modeling system	in	entering the system
GB	gas boiler	inv	investment cost, \$
H	heat provided by the collector, kW	inverter	inverter
hload(t)	heating load at time t, kW	main	maintenance cost, \$
HRSG	heat recovery steam generator	mean	mean temperature, K
ICE	Internal Combustion engine	NG	natural gas
IRR	internal rate of return	op	operation cost, \$
KPI	key performance indicator	out	leaving the system
LHV	lower heating value of natural gas	pur	purchased from grid
(kWh/m^3)		pv	PV panels
LP	linear programming	PVN	rated PV efficiency
MILP	mixed integer linear programming	pvt	PVT-CCHP system variables
MINLP	mixed integer nonlinear	\overline{PVTN}	rated PV/T efficiency
	programming	ref	reference system
NCF	net cash flow, \$	relative	relative reference to conventional
NLP	non-linear programming	generation	
NOCT	nominal operating cell temperature	sc	solar collectors
NPV	net present value, \$	SCN	rated SC efficiency
PBP	payback period, years	solar	Solar-CCHP system variables
PV	photovoltaics	sold	sold to grid
	trigeneration system with PV/Ts	sun	sun temperature
Rev	annual revenues, \$	system	system parameters
RMINLP	relaxed mixed integer nonlinear	total	sum of grid and system emissions in
141,111,121	programming	707077	CCHP system
SC	solar collectors	$total_{ref}$	sum of grid and system emissions in
scost	cost of producing Solar-electricity,	www.rej	reference system
	\$/kW		reference system
Solar-CCHP	trigeneration system with PVs and		
	SCs		

solar-electricity selling price, \$/kW

time of use

thermal solar fraction

List of Symbols

b binary variable for component selection at time t

d deviation

 $\begin{array}{ll} F & \text{fuel energy, kWh} \\ \text{Fdeviation} & \text{scheduling deviation, \%} \\ \text{G} & \text{incident radiation, W/m}^2 \end{array}$

H heat provided by the collector, kW

K fitting constant k k-factor

M maintenance cost, \$/kWh

N number

P power produced or consumed, kW

Q heat flow, kW

S sold power to grid, kW v fuel flow rate, m³/s

x binary variable for component selection

Greek letters

 η efficiency

 β temperature coefficient, %/°C

Subscripts

c cold water/cooling

e electricalh hot watern annual at year n

t thermal

Table of Contents

Abs	stract		iii
Key	words		iv
Acl	knowledg	gements	v
Lis	t of Abb	previations	vi
Lis	t of Sym	ıbols	vii
Tab	ole of Cor	ntents	viii
List	t of figure	es	xi
List	t of Table	es	xii
Pub	olications		xiii
The	esis outlin	ne	xiii
1-	Chapter	One: Introduction	1
	1.1.	Overview	1
	1.2.	Motivation	4
	1.3.	Objectives	4
	1.4.	Scope and Methodology	5
2-	Chapter	Two: Review of the State of the Art	6
	2.1.	General	6
	2.2.	Energy hub	6
	2.3.	Optimization methods	7
	2.3.1.	Nonlinear programming as an optimization technique	8
	2.3.2.	Linear programming as an optimization technique	8
	2.3.3.	Comparison between part load and simple load literature review	9
	2.3.4.	Review of Solar energy intervention with trigeneration systems	10
	2.3.5.	Knowledge gap in the field of Solar energy intervention with trigeneration systems.	11
	2.3.6. photovo	Review of comparison between side-by-side photovoltaics and thermal collectors are obtained thermal collectors	
3-C	hapter Th	hree: Methodology	14
	3.1.	General	14
	3.2.	The optimization process of the comparison can be summarized in the following ste	ps:14
	3.3.	Assumptions used in the model	15
	3.4.	Modeling	17
	3.4.1.	Part load modeling of components	17
	3.4.2.	Simple modeling of components	21
	3.4.3.	Binary variables used	21
	3.4.4.	Energy hub constraints (Energy balance equations)	21
	3.4.5.	Part load constraints	22

	3.4.6.	Grid purchase and sell constraints	23
	3.4.7.	Space constraints	23
	3.4.8.	CCHP-Electricity selling price	23
	3.4.9.	Solar-Electricity selling price	24
	3.4.10.	Key Performance Indicators (KPIs)	24
	3.4.11.	Objective function formulation	27
	3.4.12.	Thermal solar fraction (TSF)	27
	3.4.13.	Electrical solar fraction	28
	3.4.14.	Economic modeling	28
	3.4.15.	Root mean square difference (RMSD)	30
	3.4.16.	Optimization in General Algebraic Modeling System software (GAMS)	36
	3.4.17.	Model Verification and validation	36
4-	Chapter 1	Four: Case Studies	37
	4.1.	Load characteristics	37
	4.2.	Systems Adopted	37
	4.3.	Input data	43
	4.4.	ToU pricing method	43
5-	Chapter 1	Five: Results and Discussion	4
	5.1.	General	44
	5.2.	Planning results	44
	5.2.1.	First Case Study	44
	5.2.2.	Second Case Study	46
	5.2.3.	Third Case Study	47
5	.3. Siz	zing, KPIs and economic parameters results	49
	5.3.1.	First Case Study	49
	5.3.2.	Second Case Study	49
	5.3.3.	Third Case Study	50
5	.4. Op	otimal scheduling results	51
	5.4.1.	First Case Study	51
	5.4.2.	Second and Third Case Studies	55
5	.5. Fin	rst Case Study Discussion	58
	5.5.1.	Planning	58
	5.5.2.	Sizing	58
	5.5.3.	Scheduling	58
	5.5.4.	KPIs and economic parameters	59
5	.6. Se	cond Case Study Discussion	60
	561	Planning	60

5.6.2	. Sizing	60
5.6.3	. Scheduling	60
5.6.4	. KPIs and economic parameters	61
5.7.	Third Case Study Discussion	61
5.7.1	. Planning	61
5.7.2	. Sizing	61
5.7.3	. Scheduling	62
5.7.4	. KPIs and economic parameters	62
6- Chap	ter Six: Sensitivity Analysis	64
6.1.	General	64
6.2.	First Case Study Sensitivity analysis	64
6.2.1	. Methodology	64
6.2.2	. Results and Discussion	75
6.3.	Third Part Sensitivity analysis	76
6.3.1	. Methodology	76
6.3.2	. Planning	76
6.3.3	. Sizing	77
6.3.4	. Scheduling	77
6.3.5	. KPIs	77
6.3.6	. Economic parameters	77
7- Chap	ter Seven: Scientific contributions of the thesis	85
7.1.	Introduction	85
7.2.	Showing the difference between part load and simple models	85
7.3.	Assessment of solar energy optimized intervention with trigeneration systems	85
7.4. thermal	Comparison between side-by-side photovoltaics and thermal collectors and hybrid pollectors	
8- Chap	ter Eight: Conclusion, Recommendation and Future Work	87
8.1.	Introduction	87
8.2.	General conclusion	87
8.3.	Recommendations and Future work	89
Reference	S	90
9- Appe	endices	95
9.1.	Appendix A: Input equipment parameters data for the case studies	95
9.2.	Appendix B: Sizing, KPIs and economic parameters of the first case study	99
9.3.	Appendix C: Sizing, KPIs and economic parameters of the Second case study	101
9.4.	Appendix D: Sizing, KPIs and economic parameters of the Third case study	103
الماخص		106

List of figures

Figure 1.1 Reference conventional system	2
Figure 1.2 Dotted circles showed added components (prime mover, heat recovery steam gener	ator,
absorption chiller & heat exchanger) to reference system to form a trigeneration system	3
Figure 2.1 Energy hub structure that shows input resources on the left side and output required	d power forms
on the right after being converted	6
Figure 3.1 Optimization Steps	15
Figure 3.2 Relation between KPIs and formulated objective function	27
Figure 3.3 Steps of determining overall RMSD	
Figure 3.4 Steps of determining electrical scheduling RMSD	32
Figure 3.5 Steps of determining heating scheduling RMSD	33
Figure 3.6 Steps of determining sensitivity analysis RMSD	34
Figure 3.7 Flow Chart of optimization process in GAMS	35
Figure 4.1 Monthly demand	
Figure 4.2 Relation between case studies and energy systems adopted	38
Figure 4.3 Gas turbine-CCHP system	39
Figure 4.4 ICE-CCHP system	
Figure 4.5 Solar-CCHP system	
Figure 4.6 PVT-CCHP system	
Figure 4.7 Variation of utility prices	
Figure 5.1 Simple model system planning results	
Figure 5.2 Part load model planning results	
Figure 5.3 CCHP system planning results	
Figure 5.4 Solar-CCHP system planning results.	
Figure 5.5 PVT-CCHP system planning results	
Figure 5.6 Simple model optimal scheduling of electrical load (kW)	
Figure 5.7 Part load model optimal scheduling of electrical load (kW)	
Figure 5.8 Simple model optimal scheduling of heating load (kW)	
Figure 5.9 Part load model optimal scheduling of heating load (kW)	
Figure 5.10 Simple and part load models optimal scheduling of cooling load (kW)	
Figure 5.11 Electrical scheduling deviation of simple model from part load model	
Figure 5.12 Heating scheduling deviation of simple model from part load model	
Figure 5.13 CCHP System: Optimal scheduling of electrical load (kW)	
Figure 5.14 Solar-CCHP system: Optimal scheduling of electrical load (kW)	
Figure 5.15 PVT-CCHP system: Optimal scheduling of electrical load (kW)	
Figure 5.16 CCHP System: Optimal scheduling of heating load (kW)	
Figure 5.17 Solar-CCHP system: Optimal scheduling of heating load (kW)	
Figure 5.18 PVT-CCHP system: Optimal scheduling of heating load (kW)	
Figure 5.19 Optimal scheduling of cooling load (kW)	
Figure 6.1 Effect of Gas price on KPIs in simple model	
Figure 6.2 Effect of Electricity price on KPIs in simple model	
Figure 6.3 Effect of Gas price on economic parameters in simple model	
Figure 6.4 Effect of Electricity price on economic parameters in simple model	
Figure 6.5 Effect of Gas price on KPIs in part load model	
Figure 6.6 Effect of electricity price on KPIs in part load model	
Figure 6.7 Effect of gas price on economic parameters in part load model	
Figure 6.8 Effect of Electricity price on economic parameters in part load model	
Figure 6.9 Comparison between deviation of parameters from original gas price case	73

Figure 6.10 Comparison between deviation of parameters from original electricity price case	74
Figure 6.11 Effect of selling mode on Rated Capacities in Solar-CCHP mode	
Figure 6.12 Effect of selling mode on KPIs in Solar-CCHP mode	
Figure 6.13 Effect of selling mode on economic parameters in Solar-CCHP mode	
Figure 6.14 Effect of selling mode on Rated Capacities in PVT-CCHP system	
Figure 6.15 Effect of selling mode on KPIs in PVT-CCHP system	
Figure 6.16 Effect of selling mode on economic parameters in PVT-CCHP system	
<u>List of Tables</u>	
Table 3.1 Lifetime of different components	16
Table 5.1 Deviation of simple model from part load model	
Table 5.2 Effect of introducing solar energy components on an optimized CCHP system	49
Table 5.3 Deviation of PVT-CCHP from Solar-CCHP system	50
Table 6.1 Results of sensitivity analysis of simple model	64
Table 6.2 Results of sensitivity analysis of part load model.	68
Table 6.3 Deviations and RMSDs of actual and sensitivity analysis models	74
Table 6.4 Results of Solar-CCHP system sensitivity analysis	78
Table 6.5 Results of PVT-CCHP system sensitivity analysis	82
Table 9.1 Input data for the case study	95
Table 9.2 Sizing, KPIs and economic parameters of the first case study	99
Table 9.3 Sizing, KPIs and economic parameters of the Second case study	
Table 9.4 Sizing, KPIs and economic parameters of the Third case study	

Publications

This thesis is based on the following papers:

- 1- Mohamed A. Kamel, Amr Y. Elbanhawy, Mahmoud Abo El-Nasr "A novel methodology to compare optimized CCHP and Solar-CCHP systems based on overall system-comparison". 2019 MIT Applied Energy "A+B" Symposium held in Boston, USA on 22nd to 24th May 2019.
- 2- Mohamed A. Kamel, Amr Y. Elbanhawy, Mahmoud Abo El-Nasr "Optimal planning, sizing and scheduling of trigeneration systems". Architecture and urbanism a smart look. The 3rd international conference of Architecture and Urban planning, Faculty of Engineering, Ain Shams University, 14-16 October 2019.
- 3- Mohamed A. Kamel, Amr Y. Elbanhawy, Mahmoud Abo El-Nasr "Quantification of error resulting from using simple model instead of part load model in optimal planning, sizing, scheduling and sensitivity analysis of trigeneration systems". Submitted for review in Applied Energy Elsevier Journal.
- 4- Mohamed A. Kamel, Amr Y. Elbanhawy, Mahmoud Abo El-Nasr "A novel methodology to compare on a system-basis between side-by-side photovoltaics and thermal collectors CCHP system and hybrid photovoltaic thermal collectors CCHP system". Submitted for review in Energy Conversion and Management Elsevier Journal.

Thesis outline

- **Chapter 1** states the motivation, objective, method, and scope of the work.
- Chapter 2 provides State of the art on modeling and optimization of trigeneration energy systems.
- **Chapter 3** presents the methodology of the modeling and optimization of the adopted case studies.
- **Chapter 4** describes the case studies and the input data.
- **Chapter 5** presents the results and discussions of all case studies with sensitivity analyses.
- **Chapter 6** presents the results and discussions of sensitivity analyses.
- **Chapter 7** summarizes the thesis' novel contributions.
- **Chapter 8** points out the concluding remarks based on the results, recommendations and future work from author's point of view.