The Role of Convex Probe Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in the Diagnosis of Hilar and Mediastinal lesions

Thesis submitted for partial fulfillment of M.D in Pulmonary Medicine

Presented by

Asmaa Mohamed Abdelghani Elasser

Master degree in Pulmonary Medicine (Ain Shams University)

Supervised by Professor / Laila Ashour Helalah

Professor of Pulmonary MedicineAin Shams University

Professor / Ashraf Mokhtar Madkour

Professor of Pulmonary MedicineAin Shams University

Professor / Nevine Mohamed Abd Elfattah

Professor of Pulmonary MedicineAin Shams University

Professor / Ragaa Amin Fawzy

Professor of Pathology Ain Shams University

Doctor / Rehab Maher Mohamed

Lecturer of Pulmonary MedicineAin Shams University

Faculty of Medicine Ain Shams University 2019

دور أخذ عينة بإبرة المجس المحدب بالموجات فوق الصوتية من خلال الشعب الهوائية في تشخيص الإصابات الحيزومية

رسالة توطئة للحصول علي درجة الدكتوراة في الامراض الصدرية

مقدمة من

أسماء محمد عبد الغني الأعسر ماجستير الامراض الصدرية-عين شمس

تحت إشراف

أ.د/ ليلي عاشور هلالة أستاذ الأمراض الصدرية جامعة عين شمس

أ.د/ أشرف مختار مدكور أستاذ الأمراض الصدرية جامعة عين شمس

أ.د/ نيفين محمد محمد عبد الفتاح أستاذ الأمراض الصدرية جامعة عين شمس

> أ.د/ رجاء أمين فوزي أستاذ الباثولوجي جامعة عين شمس

د/ رحاب ماهر محمد مدرس الأمراض الصدرية جامعة عين شمس

جامعة عين شمس 2019

First, thanks to "ALLAH" for granting me the power to accomplish this work and without His willing I would have achieved nothing.

No words can describe my great appreciation, genuine respect and gratefulness for *Prof. Laila Ashour Helalah* Professor of Chest Diseases, Faculty of Medicine, Ain Shams University for her valuable knowledge, continuous encouragement, sincere advice, tremendous support

I would like to express my profound gratitude and appreciation to **Prof. Ashraf Mokhtar Madkour** Professor of Chest Diseases, Faculty of Medicine, Ain Shams University for his valuable knowledge, meticulous guidance, and great support in accomplishment and reviewing this work, learning me the ethics and basics throughout my work

I am very grateful to **Prof. Nevine Mohamed Abd Elfattah**, professor of Chest Diseases, Faculty of Medicine, Ain Shams University for his cooperation, guidance and support throughout this work.

I would like to express my sincere gratitude and appreciation to **Prof. Ragaa Amin Fawzy** Professor of pathology, Faculty of Medicine, Ain Shams University for her great support, valuable knowledge, generous help, and guidance that enabled me to accomplish this work.

I would like to express my profound gratitude and appreciation to *Doctor / Rehab Maher Mohamed* Lecturer of Chest Diseases, Faculty of Medicine, Ain Shams University for her continuous encouragement, sincere advice, tremendous support, great and continues help, and guidance in accomplishment this work.

No words can describe my great appreciation, genuine respect and gratefulness for Prof. Ayman Albdel Hamid Farghaly professor of Chest Diseases Military Medical Academy for his valuable knowledge, guidance, and great support in accomplishment this work, I owe to him so much for his great effort and help. Also many thanks to his team at Kobri Elkoba Military Hospital for their help and support I would like to express my profound gratitude and appreciation to My seniors and all pulmonary endoscopy unit team at abbasia chest hospital for their great help and guidence No words can describe my great appreciation, profound gratitude and appreciation to My parents, My husband and all My family who were always beside me giving me all forms of support and great help to accomplish this work.

List of abbreviations				
EBUS:	Endobronchial ultrasound			
SVC:	Superior vena cava			
LN:	Lymph node			
LT:	Left			
RT:	Right			
CXR	chest X-ray			
CECT	Contrast enhanced computed tomography			
COPD	chronic obstructive pulmonary disease			
HIV	human immunodeficiency virus infection			
SACE	serum angiotensin converting enzyme			
GCT:	Germ cell tumors			
WHO:	World Health Organization			
ICDO:	International Classification of Diseases for Oncology			
CT:	computed tomography			
FDG-PET:	Fluorodeoxyglucose-positron emission tomography			
SCLC:	small cell carcinoma			
NSCLC:	non-small cell carcinoma			
MRI:	magnetic resonance imaging			
TUS:	transcutaneous ultrasound			
TMUS:	transcutaneous mediastinal ultrasound			
EBUS-	Endobronchial ultrasound combined with			
TBNA:	transbronchial needle aspiration			
EUS-FNA:	endoscopic ultrasound fine needle aspiration			
VAM:	video-assisted mediastinoscopy			
VAMLA:	video-assisted mediastinoscopy and lymphadenectomy			
VATS:	video-assisted thoracoscopic surgery			
ECM:	extended cervical mediastinoscopy			
TEMLA:	transcervical extended mediastinoscopy			
IHC:	immunohistochemistry			
cTBNA:	Conventional TBNA			

US:	Ultrasound		
List of tables			
ROSE:	rapid on-site cytological evaluation		
TB:	Tuberculosis		
ERS:	European Respiratory Society		
ATS:	American Thoracic Society		
ACCP:	American College of Chest Physicians		
FOB:	Fibro obtic bronchoscopy		
SD:	Stander deviation		
DA:	Diagnostic Accuracy		
PPV:	Positive Predictive Value		
NPV:	Negative Predictive Value		
CI:	Confidence interval		
TP:	True positive		
TN:	True negative		
FP:	False positive		
FN:	False negative		

Table N.	Title	Page
1	Differential Diagnosis of a Mediastinal	6
	Mass by Anatomic Location	
2	Localizing Symptoms Secondary to	7
	Tumor Invasion of Surrounding	
	Structures	
3	Systemic Syndromes Secondary to	7
	Primary Mediastinal Tumors and Cysts	
4	Yield and safety of surgical methods to	24
	access mediastinal and hilar lymph	
	node stations	
5	Comparison of the two types of EBUS	31
6	General characteristics of the studied	69
	cases	
7	EBUS-TBNA procedure related	70
	performance	
8	Final Histopathological diagnosis of	71
	the studied cases	
9	Methods of final diagnosis of the	72
	studied cases	
10	Diagnostic validity of EBUS-TBNA	74
11	Predictive value of EBUS-TBNA in	75
	diagnosis	
12	Diagnostic validity of EBUS-TBNA in	75
	diagnosis of malignancy, sarcoidosis	
	and TB	
13	Comparison of EBUS-guided TBNA	76
	Results With final diagnosis	
14	"Appendix" Collecting data table of	122
	studied cases	

List of Figures			
Figure N.	Title	Page	
1	Mediastinal lymph node mapping	8	
2	Tip of EBUS porbe,	32	
	A: needle penetrate the tracheal wall		
	us guided		
	B: needle penetrated lesion at us view		
3	LN mapping according to EBUS.	32	
	EUS accessibility		
4	EBUS Convex Probe BF-	53	
	UC180F;Olympus with HI Vision		
	preirus Hitashi ultrasound Prosound α7		
	primer aloka		
5	EBUS Convex Probe BF-UC180F;	53	
	Olympus		
6	Echo Tip ProCore HD Ultrasound	54	
	Biopsy Needle, Cook 22G		
7	Regional lymph node mapping by	57	
	EBUS. EBUS images and		
	bronchoscopic landmarks of		
	representative LN stations		
8	Histopathological diagnosis of the	72	
	studied cases		
9	Method of final diagnosis of the	73	
	studied cases		

List of content		
List of abbreviations		
List of tables		
List of figures	IV	
Introduction	1	
Aim of the work	3	
Review		
1.Mediastinum	4	
2.Hilum	9	
3.Lung cancer	14	
4.Diagnosis of mediastinum and hilar Lesions	18	
5.History of TBNA	26	
6.Ultrasound	28	
7.EPUS probe	30	
8.EBUS – TBNA needle	35	
9. Artifacts	37	
10.Utility of EBUS		
11. complications		
12.Specimen Preparation		
13.EBUS Training		
Subject and methods		
Results		
Discussion		
Summary		
Conclusion		
Recommendation		
References		
Appendix		
Arabic summary		

Abstract

Background: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has been recently introduced as a new technique for sampling the hilar/ mediastinal lesions [lymph node (LN) enlargement or masses] with a potential to improve the diagnostic yield as it allows direct visualization of lesion beyond the tracheobronchial wall allowing real-time sampling. EBUSTBNA diagnostic yield has been satisfactory for both benign and malignant lesions.

Aim To: evaluate the utility of convex probe EBUS-TBNA in the diagnosis of hilar and mediastinal lesions (LN enlargement or masses). **Patients and methods:** This is a prospective study in which EBUS-guided TBNA via a real-time ultrasound bronchoscope was used to diagnose 25 patients with mediastinal or hilar LN enlargement or masses

Results: EBUS-guided TBNA was performed on 15 patients with enlarged mediastinal/hilar LNs and 11 patients with mediastinal masses, achieving specific diagnosis in 73.3% (11/15) and 81.8% (9/11), respectively. The overall diagnostic yield of EBUS-TBNA was 76% (19/25). Overall sensitivity was 82.6%, specificity 100%, positive predictive value 100%, and negative predictive value 33.33%. EBUS-TBNA procedure had no complications in 76% of cases.

Conclusion: EBUS-TBNA is a minimally invasive, safe, yet still underutilized diagnostic technique with adequate diagnostic yield. Its nationwide application in the field of diagnostic bronchoscopy should be encouraged.

Keywords: endobronchial ultrasound-directed transbronchial needle aspiration, malignancy, mediastinal lesions, mediastinal lymph nodes, sarcoidosis, tuberculosis

Egypt J Bronchol 2019 © 2019 Egyptian Journal of Bronchology Egyptian Journal of Bronchology

Introduction

In the staging of lung cancer or in the presence of mediastinal lymphadenopathy invasive diagnosis of mediastinal lesions is fundamental. Despite imaging methods advances, tissue samples are essential for diagnostic confirmation and treatment planning (*Pillot et al.*, 2006).

for collecting material for cytology less invasive methods recently have emerged as an alternative endobronchial ultrasound (EBUS), Among these methods, developed in the past decade, as an outpatient method and allows access to hilar stations in addition to paratracheal stations, for detection and collecting material from lymph nodes less than 1 cm (*Whitson et al.*, 2007).

In the outpatient setting under sedation, EBUS-TBNA allows sampling of hilar, paratracheal, subcarinal lymphadenopathy. This technique established sensitivity more than 90% not only in the diagnosis but also in staging of lung cancer, even early in the learning process (*Navani et al., 2011*)*. In the diagnosis of sarcoidosis by utility of EBUS-TBNA Prospective data are now available (*Tremblay et al., 2009*), (*Navani et al., 2011*)**, and in

small series a high diagnostic yield has demonstrated in tuberculous lymphadenopathy (*Hassan et al.,2011*). While in the diagnosis of extrathoracic malignancies the role of EBUS-TBNA had a limited data (*Tournoy et al.,2011*).

Aim of Work

The objective of the present prospective study is to evaluate the role of EBUS-TBNA in the diagnosis of hilar and mediastinal lesions (lymph node enlargement or masses)

1.Mediastinum

1.1Anatomy:

The mediastinum boundaries, the thoracic inlet superiorly, the pleural cavities laterally, and the diaphragm inferiorly. Organs located in the mediastinum include thymus gland, the great vessels, the heart, the chest portion of the trachea, lymph nodes, the esophagus, and important nerves.

Based on structural landmarks it divided into Superior mediastinum and Inferior mediastinum which divided to (Anterior - Middle- Posterior). This important for diagnosing suspected masses.(*Fraser et al.*,1994)

-Superior mediastinum Contains (Thymus- Arch of Aorta - Lt Common carotid artery- SVC- Lt &Rt brachiocephalic veins- Lymph nodes (LN)- Brachiocephalic artery- Lt Subclavian artery-Trachea- Nerves- Esophagus- Thoracic Duct).

- -The anterior mediastinum contains: the thymus, fat, and lymph nodes.
- -The middle mediastinum contains the pericardium, heart, trachea, bronchi, ascending and transverse aorta, LN and brachiocephalic veins.

-The posterior mediastinum contain thoracic lymph nodes, the descending thoracic aorta, fat, esophagus, azygous vein, nerves, and autonomic ganglia

The likelihood of malignancy is affected primarily by three factors: age of the patient; location of mass; and the presence of symptoms. Although mediastinal tumors are benign in more than two thirds, malignant is more likely in masses in the anterior compartment. (*Strollo et al.*, 1997)

1.2. Mediastinal lesions

In study by *Davis et al* malignancy was seen in 59% in anterior, 29% in middle, and 16% in posterior mediastinal masses in 400 patients. Age was an important predictor of malignancy (*Davis et al.*, 1987). Causes of mediastinal mass by anatomic location at (table 1)

1.3. Symptoms

In Davis et al, symptoms found in 85%, 46% of patients with malignant, and benign tumor respectively. Common symptoms at presentation were; cough (60%) chest pain (30%); fevers/ chills (20%); dyspnea (16%).

The Most symptoms could categorized into: localizing symptoms secondary to tumor invasion (Table 2), and systemic symptoms due to the release of excess