ASSESSMENT OF MICROBIAL AND CHEMICAL LOAD OF SOME DRINKING WATER PLANTS INTAKES IN GREATER CAIRO

Submitted By

Mona Ezzat Abd El-Tawab Abd El-Samad

B.Sc. of Science (Chemical, Microbiology), Girl Faculty, Ain Shams University, 2000

Diploma in Microbiology, Faculty of Benha Science, Zagazig University, 2001

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research

Ain Shams University

2019

ASSESSMENT OF MICROBIAL AND CHEMICAL LOAD OF SOME DRINKING WATER PLANTS INTAKES IN GREATER CAIRO

Submitted By

Mona Ezzat Abd El-Tawab Abd El-Samad

B.Sc. of Science (Chemical, Microbiology), Girl Faculty, Ain Shams University, 2000

Diploma in Microbiology, Faculty of Benha Science, Zagazig University, 2001

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

Under The Supervision of:

1- Prof. Dr. Ayman Helmy Kamel

Prof. of Analytical Chemistry - Chemistry Department Faculty of Science - Ain Shams University.

2- Prof. Dr. Rawhia Abdel Monam Arafa

Prof. of Microbiology - Botany and Microbiology Department Faculty of Science - Al Azhar University (Girl Branch).

APPROVAL SHEET

ASSESSMENT OF MICROBIAL AND CHEMICAL LOAD OF SOME DRINKING WATER PLANTS INTAKES IN GREATER CAIRO

Submitted By

Mona Ezzat Abd El-Tawab Abd El-Samad

B.Sc. of Science (Chemical, Microbiology), Girl Faculty, Ain Shams University, 2000

Diploma in Microbiology, Faculty of Benha Science, Zagazig University, 2001

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

This Thesis Towards a Master Degree in Environmental Sciences Has Been Approved by:

Name Signature

1- Prof. Dr. Ayman Helmy Kamel

Professor of Analytical Chemistry - Chemistry Department Faculty of Science - Ain Shams University.

2-Prof. Dr. Rawhia Abd Elmonam Arafa

Professor of Microbiology - Botany and Microbiology Department Faculty of Science – Al Azhar University (Girl Branch).

3- Prof. Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Prof. of Environmental Chemistry and Sub manager of Institute of Environmental Studies & Research- Ain Shams University

4-Prof. Dr. Rawhia Abd ElLatif Salah El din

Professor of Algae Physiology - Botany and Microbiology Department-Faculty of Science - Al Azhar University (Girl Branch).

سورة البقرة الآية: ٣٢

ACKNOLEDGMENT

First of all, all thanks & praise are to *Allah* for giving me prosperity & strength to fulfill this work.

I would like to express my deepest gratitude to my advisor, *Prof. Dr. Ayman Helmy Kamel*, Professor of Analytical Chemistry, Faculty of
Science - Ain Shams University for his excellent guidance, caring, patience, valuable advice and the facilities provided to carry out the research.

I will forever be thankful to my second supervisor, *Prof. Dr. Rawhia Abd Elmonam Arafa*, Professor of Microbiology, Botany and Microbiology

Department - Faculty of Science in Azhar University (Girl Branch), for her supervising, continuous encouragement, and sincere help in field work.

I will forever be thankful to **Basic Science Department** in Institution of Environmental Studies and Research. Also for **managers and colleagues of water control department** in the ministry of health.

My special words of thanks should also go to my *Mother*, my sister *Abeer*, my brothers *Mohammed and Ahmed*, for their love and helpful cooperation.

I express my heartfelt thanks to my sincerely my husband *Talal Elsayed*, my Son *Ahmed* and my daughter *Menna*, they were always cheering me up and stood by me and encouragement during the hard time through this work until it comes to light

A special thanks to the spirit of my *Father*, he was always motivating me and encouraging me since my childhood.

Abstract

River Nile is the main source of fresh water for domestic, agriculture, industry, fisheries and tourism purposes for most governorates in Egypt.

Unfortunately, the drinking water plant intakes on River Nile is impacted by increasing concentrations of pollutants resulted from the agricultural drains located along its sides, industrial effluents and domestic waste from villages which have no sanitation system.

This study aims at monitoring Total coliform, *E.coli*, algae which may be related with the risk of diarrheal diseases and other diseases if they are present in water. Also, suggesting limits for them in the criteria of drinking water plant intakes at Article 49 from decree No. 92 of 2013 in law No. 48 of 1982 for the protection of River Nile from pollution. Also to monitor microbiological and chemical water quality and expect any early water deterioration that will facilitate the solution before aggravate the problem.

All samples collected from drinking water plants intakes were chosen in four seasons from September 2016 to October 2017. Each source of water samples was collected every month at three governorates: Cairo (Al Amarya - Al Tepeen - Manial Al Rawdah - Maadi), Giza (Embaba - El Saff- Gezirat Al Dahab-Giza - Al Hawamdiyah-Kafr Kandeel), and Kalyobia (Abo Zaabal - Al Reeyah El Tawfekey - El-Abadla - Basoos - Qualube) . The total numbers of collected samples from intakes and produced water were 210 samples. The parameters under investigation were: Total Coliform, *E.coli* and algal count by Sedgwick Rafter cell was also done.

In addition, pH, Total dissolved Solids (TDS), Biological Oxygen demand (BOD), Chemical Oxygen demand (COD), Cadmium, Chromium, Lead, Zinc, Total Phosphorus (TP), Total Nitrogen (TN), Ammonia, Organophosphorus and Chlorinated pesticides.

Results showed that the Nile water contain high count of pathogenic indicator bacteria (pollution indicator) and algae where the intakes mean of most probable number for Total coliform ranged between 10.33×10^3 and $6.75 \times 10^4 / 100 \text{cm}^3$. *Escherichia coli* ranged between 12×10^3 and $1.37 \times 10^4 / 100 \text{ cm}^3$.

The mean algal count ranged between 1783 and 3718 unit /1ml. The most algae types present in Nile water are Diatoms with percent 73.3 % followed by green algae with percent 24 % and the lowest is Cyanobacteria (blue green) with percent 2.7 %. While all chemical analysis was compliance with the criteria at Law No. 48 of 1982 except COD mean was in six intakes. Also lead, zinc and cadmium were violate the limits in some intakes on Al Reeyah El Tawfekey canal and Ismailia Canal due to many industries.

Keywords: Total coliform; *E. coli*; drinking water plant intakes; *algal* count; BOD; COD.

CONTENTS

Subject	Page No.
Abstract	Ι
Content	III
List of Abbreviation	IX
List of Tables	XI
List of Figures	XIV
CHAPTER I : INTRODUCTION	1
1.1.Background	2
1.2.water treatment	3
1.3. Indicator microorganisms	4
CHAPTER II: LITERATURE REVIEW	6
1.1.Water resources in Egypt	7
1.1.1. River Nile	7
1.1.2. Groundwater	7
1.1.3. Rainfall	8
1.1.4. Desalination	8
1.1.5. Water reuse	8
2. Purification of water	9

Subject	Page No.
2.1. Water Treatment Plants	9
2.2. Conventional Treatment	9
3. Contamination factor in Water	10
3.1. Water Contamination	10
3.2. Total Coliform in Water	11
3.3. Algae in Nile Water	12
4. Chemical Quality of Nile Water	13
4.1 Total dissolved solids (TDS)	13
4.2 Biological oxygen demand (BOD)	14
4.3 Chemical oxygen demand (COD)	14
4.4 Nutrients	15
4.5 Heavy Metals	16
4.6 Organo phosphorus and chlorinated pesticides	17
5. Microbiological Quality of Nile Water	18
5.1 Total coliform	19
5.2 Escherichia coli	20
5.3Algae	20
6-Protection of the drinking water plant intakes	22

Subject	Page No.
CHAPTER III : MATERIALS AND METHODS	23
3. Materials and Methods	24
3.1. Materials	24
3.1.1. Reagents and Fine Chemicals	24
3.1.2. Apparatus	24
3.2. Methods	25
3.2.1. Sample Collection	25
3.2.1.1. Survey of River Nile	25
3.2.2. Laboratory Work	28
3.2.2.1.Physico-Chemical and Organic Analysis	28
3.2.2.1.1. Measurement of pH	29
3.2.2.1.2. Measurement of TDS	30
3.2.2.1.3. BOD	30
3.2.2.1.4. COD	31
3.2.2.1.5.Organic Analysis	32
3.2.2.1.5.1.Residual Organic Determination	32
3.2.2.1.5.1. 1. Liquid - Liquid Extraction	32
3.2.2.1.6. Heavy Metals	35

Subject	Page No.
3.2.2.1.7. Analysis of nutrients	35
3.2.2.1.7.1 Analysis of Ammonia	36
3.2.2.1.7.2 Analysis of phosphates	36
3.2.2.2. Bacteriological Analysis and Algal Count	37
3.2.3. Bacteriological Parameters	37
3.2.3.1 Total Coliform	37
3.2.3.2 Escherichia coli	42
3.2.4. Algal Count	43
3.2.5. Egyptian Standard Limits	45
3.2.6.Data analysis	45
CONCLUSIONS & RECOMMENDATIONS	46
CHAPTER IV: RESULT AND DISCUSSION	46
4.1. Survey of River Nile Water in Greater Cairo	47
4.1.1. pH	49
4.1.2. Chemical analysis	50
4.1.2.1. Total Dissolved Solids (TDS)	50
4.1.2.2. Biological Oxygen Demand (BOD)	52
4.1.2.3. Chemical Oxygen Demand (COD)	53

Subject	Page No.
4.1.3. Nutrient	54
4.1.3.1 Total phosphorus (TP)	55
4.1.3.2 Total Nitrogen (TN)	55
4.1.3.3 Ammonia (NH ₃)	55
4.1.4. Heavy Metals	57
4.1.4.1. Chromium (Cr)	57
4.1.4.2. Cadmium (Cd)	57
4.1.4.3. lead (Pb)	58
4.1.4.4. Zinc (Zn)	58
4.1.5. Organic Analysis	60
4.1.6. Algal Examination	61
4.1.6.1. Algal Population in the intakes	61
4.1.6.1.1. Diatoms	63
4.1.6.1.2. Green algae	63
4.1.6.1.3. Blue green algae	63
4.1.6.2. Common Algal Species in Nile River	64
4.1.6.3 Algal Population in the produced water from drinking plants	67

Subject	Page No.
4.1.6.4. Algal count comparison between Intakes and produced water	68
4.1.6.5. Common troubles caused by some Algal Species	70
4.1.7. Bacteriological Examination	71
4.1.7.1. Total Coliform in intakes	72
4.1.7.2. Escherichia coli in intakes	73
4.1.7.3. Total Coliform and E.Coli in produced water from the plants	75
4.2. Conventional Treatment Methods in DWTP	79
4.3. The difference between The quality of Nile, Ismailia and Al Reeyah El Tawfekey Canals	80
CONCLUSIONS & RECOMMENDATIONS	86
Summary	89
REFERENCES	92
APPENDIX	99

LIST OF ABBREVIATION

No.	Abbreviations	Meaning
1	ВСМ	Billion cubic meter
2	BOD	Biological Oxygen Demand
3	Cd	Cadmium
4	Cr	Chromium
5	COD	Chemical Oxygen Demand
6	DO	Dissolved oxygen
7	DWTPs	Drinking Water Treatment Plants
8	E.Coli	Escherichia coli
9	EEA	European Environmental Agency
10	EPA	Environmental Protection Agency
11	GC	Gas Chromatography
12	НАВ	Harmful algal bloom
13	нсн	Hexachlorocyclo hexane
14	mL	Milliliter
15	MPN	Most Probable Number
16	NH ₃	Ammonia
17	OCPs	Organochlorine pesticides

List of Abbreviations &

18	Pb	Lead
19	SMWW	Standard Method for Examinations of Water and Wastewater
20	TDS	Total Dissolved Solids
21	TN	Total nitrogen
22	TP	Total phosphorus
23	USEPA	US Environmental Protection Agency
24	WHO	World Health Organization
25	Zn	Zinc