

EXPERT SYSTEM FOR MUD LOSSES & STUCK PIPE PROBLEMS DURING DRILLING OPERATIONS

By

Ahmed Mahmoud Mohamed Abu-El-Ella

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science
In
Petroleum Engineering

EXPERT SYSTEM FOR MUD LOSSES & STUCK PIPE PROBLEMS DURING DRILLING OPERATIONS

By

Ahmed Mahmoud Mohamed Abu-El-Ella

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science
In
Petroleum Engineering

Under the Supervision of

Prof. Dr. Abdel-Sattar Dahab	Prof. Dr. Eissa Mohamed Shokir
Professor of Petroleum Engineering	Professor of Petroleum Engineering
Faculty of Engineering	Faculty of Engineering
Cairo University	Cairo University

Faculty of Engineering, Cairo University GIZA, EGYPT 2019

EXPERT SYSTEM FOR MUD LOSSES & STUCK PIPE PROBLEMS DURING DRILLING OPERATIONS

By Ahmed Mahmoud Mohamed Abu-El-Ella

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science
In
Petroleum Engineering

Approved by the
Examining Committee

Prof. Dr. Abdel-Sattar Dahab, Thesis Main Advisor
Prof. in Petroleum Department- Faculty of Engineering – Cairo University

Prof. Dr. Eissa Mohamed Shokir, Advisor
Prof. in Petroleum Department- Faculty of Engineering – Cairo University

Prof. Dr. Abdel-Allem Hashem Al-Said, Internal Examiner
Prof. in Petroleum Department- Faculty of Engineering – Cairo University

Prof. Dr. Hesham Mohamed Al-Attar, External Examiner
Vice President of E-Gas

Faculty of Engineering, Cairo University
GIZA, EGYPT
2019

Ahmed Mahmoud Mohamed Abu-El-Ella **Engineer's Name:**

Date of Birth: 18/02/1988 **Nationality:** Egyptian

E-mail: Eng_ahmed_pet@hotmail.com

Phone: +201229272822

Address: 6 Boutros Basha Street, El-Zaher, Cairo, Egypt

Registration Date: 01/03/2012 **Awarding Date:**/2019 Master of Science

Department: Petroleum Engineering Department

Supervisors:

Degree:

Prof. Dr. Abdal-Sattar Dahab Prof. Dr. Eissa Mohamed Shokir

Examiners:

Prof. Dr. Abdel-Sattar Dahab (Thesis main advisor)

Prof. Dr. Eissa Mohamed Shokir (Advisor)

Prof. Dr. Abdel-Allem Hashem Al-Said (Internal examiner) Prof. Dr. Hesham Mohamed Al-Attar (External examiner)

Vice President of E-Gas

Title of Thesis:

Expert System for Mud Losses & Stuck Pipe During Drilling Operations.

Kev Words:

Drilling Operation; Drilling Problems; Mud Losses; Drilling Fluids; Stuck Pipe.

Summary:

Drilling operations are often accompanied by problems which have many adverse effects on the overall progression of the entire endeavor, and dealing with them can; in many cases can cause to the success or the failure of the whole operation. Efficiency of drilling operations is usually expressed in many parameters; such as, overall cost and NPT (Non-Productive Time). Mud losses and pipe sticking are two of the major drilling problems that can have severe effects on the above mentioned factors. Logically speaking, the best possible way to deal with any problem is to avoid it all together. However, achieving such a goal would require the ability to anticipate, detect and intercept the problem before it occurs, which requires certain levels of experience and knowledge from all parties included in the planning and execution phases of the drilling operations. Thus, a need for a platform which combines, experience, knowledge, history data and ease of access is not only understood; but also, any efforts to cover such gaps are always welcomed and appreciated.

The EXPERT SYSTEM program is user friendly platform that integrates previous experiences, accumulated knowledge, recorded history data, along with real time collected data to provide the end user with both; preventive measures that help in avoiding incidents leading to mud losses or sticking of drill string pipes. Also the corrective counter measures shall any of those problems occur during drilling operations.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

DEDICATION

I would like to present this writing to my family for giving me all the inspiration and support I need.

ACKNOWLEDGMENTS

In the name of Allah, the beneficent, the merciful, and peace is upon hid prophet Mohamed. I would like to take this opportunity to thank some of the people who have been an essential part of my studies at Cairo University. Special thanks go to Prof. Dr. Abdel Sattar A. Dahab who was always willing to provide his insights and direction and his full support during the entire research period. I would like to thank Prof. Dr. Eissa M. Shokir for his invaluable guidance, inspiration and support in the development of this work and throughout my studies at Cairo University.

Thanks to my colleagues at the General Petroleum Company due to their contributing in the development of this work. Special thanks go to Eng. Hamdy Taha & Eng. Mahmoud Farag whom was always willing to provide their insight and directions.

I would also like to thank my family and my wife whom has been a constant source of support throughout this period.

Table of Contents

DISCLAIMER	I
DEDICATION	II
ACKNOWLEDGMENTS	III
TABLE OF CONTENTS	IV
LIST OF TABLES	VI
LIST OF FIGURES	IX
NOMENCLATURE	XV
ABSTRACT	
CHAPTER 1: INTRODUCTION	
CHAPTER 2: LITERATURE REVIEW	5
2.1: Introduction	5
2.2: Lost Circulation	
2.2.1: Previous Studies on Losses Circulation	
2.3: Stuck Pipe	
2.3.1: Previous Studies on Stuck Pipe	6
2.3.2: Differential Sticking	
CHAPTER 3: STATEMENT OF THE PROBLEM AND METHODOLOG	GY9
3.1: Statement of the Problem and Thesis Objective	
3.2: Methodology	
CHAPTER 4: LOSS OF CIRCULATION	
4.1: Introduction	
4.1.1: Remedial Measures	
4.1.2: Rock Mechanics	12
4.1.2.1: In-Situ Stresses	
4.1.3: Stress Cage	
4.1.3.1: Bridging	
4.1.3.2: The Strengthening Process	
4.1.4: Particle Size Distribution	
4.1.5: Drilling Fluids	
4.2: Analysis for Developing Expert System for Mud Losses	
4.2.1: Classification of Losses	
4.2.2: Types of Fracture Formations	
4.2.3: Drilled Well Analysis	
4.3: Results and Discussion	
4.3.1: Statistical Analysis before Expert System Development	
4.3.1.1: Effect of Hole Size	
4.3.1.2: Effect of Formation Lithology	
4.3.1.3: Effect of Mud Type	
4.3.1.4: Losses Classification	
4.3.1.5: Mud Losses Problem NPT & Cost	
4.3.1.6: Effect of Mud Properties	
4.3.1.7: Effect of Drilling Parameters	
4.3.1.8: Mud Losses Problems Occurrence Situation	76

4.3.1.9: Reasons for the Occurrence of Mud Losses Problem	77
4.3.1.10: Losses Treatment	80
4.3.1.11: Best Practice for Restoring Circulation	84
4.3.1.12: Failure to Cure Lost Circulation [22-23]	85
4.3.1.13: Preventive Measurements	85
4.4: Development of Expert System for Mud Losses	86
4.4.1: Expert System for Mud Losses Input and Output Data	90
4.5: Analysis and Results after Expert System Development	
4.5.1: Well Analysis	93
4.5.2: Results and Comparisons	98
CHAPTER 5: STUCK PIPE	101
5.1: Introduction	101
5.2: Analysis for Developing Expert System for Stuck Pipe	102
5.2.1: Drilled Well Analysis	
5.3: Results and Discussion	129
5.3.1: Statistical Analysis before Expert System Development	129
5.3.1.1 Stuck Pipe Mechanism NPT & Cost	
5.3.1.2: Operation while Stuck Pipe Incident	
5.3.1.3: Stuck Pipe Problems Related to Hole Size	
5.3.1.4: Effect of Formation Lithology	
5.3.1.5: Effect of Hole Deviation	
5.3.1.6: Effects Helps for the Appearance of Stuck Pipe	135
5.3.1.6.1: Mechanical Hole Pack-off & Bridges	
5.3.1.6.1.1: Unconsolidated Formations	
5.3.1.6.1.2: Mobile Formations	139
5.3.1.6.1.3: Reactive Formations	142
5.3.1.6.1.4: Geo-Pressurized Formations	145
5.3.1.6.1.5: Inadequate Hole Cleaning	148
5.3.1.6.1.6: Fractured & Faulted Formations	151
5.3.1.6.1.7: Hole Pack-off Mechanism First Actions	154
5.3.1.6.2: Differential Sticking	156
5.3.1.6.3: Mechanical & Wellbore Geometry	
5.3.1.6.3.1: Key seating	
5.3.1.6.3.2: Undergauge Hole	
5.3.1.6.3.3: Ledges & Doglegs	
5.3.1.6.3.4: Green Cement	
5.3.1.6.3.5: Junk	166
5.3.1.6.3.6: Mechanical & Wellbore Geometry First Actions	168
5.3.1.7: Stuck Pipe Problems Root Causes	
5.4: Development of Expert System for Stuck Pipe	
5.5: Analysis and Results after Expert System Development	
5.5.1: Results and Comparisons	
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS	
6.1: Conclusions	
6.2: Recommendation	
REFERENCE	

List of Tables

Table 2-1: Time lost due to borehole instability problems for 6 wells in the Nor	
Table 4-1: Losses rate classification [22]	15
Table 4-2: Drilled wells proposed mud properties in the western desert	16
Table 4-3: Percentage of mud losses problem related to hole size	46
Table 4-4: Percentage of mud losses problems cases for each formations lithological	ogy47
Table 4-5: Mud types for each hole and the number of mud losses occurrence reach	
Table 4-6: Pore pressure and fracture pressure for each hole size	50
Table 4-7: Mud losses treatment costs	51
Table 4-8: Mud losses problems NPT for each stuck mechanism	51
Table 4-9: Pore pressure and fracture pressure for each hole size	52
Table 4-10: Situation while the occurrence of mud losses related to fracture type	e77
Table 4-11: Causes of lost circulation	78
Table 4-12: Lost circulation treatment techniques [23]	81
Table 4-13: Lost circulation materials types [6]	82
Table 4-14: Treatment steps for losses types	83
Table 4-15: Output data from expert system for mud losses for seepage losses	90
Table 4-16: Output data from expert system for mud losses for partial losses	91
Table 4-17: Output data from expert system for mud losses for complete losses	92
Table 5-1: Drilled wells proposed mud properties in the eastern desert	103
Table 5-2: Types of stuck pipe related to stuck mechanism	130
Table 5-3: Stuck pipe mechanism freeing & solving costs	131
Table 5-4: Stuck pipe problems NPT for each stuck mechanism	131
Table 5-5: Types of stuck pipe related to each hole size	133
Table 5-6: Stuck pipe types related to each formation lithology	134
Table 5-7: Pore pressure values for each hole size	135
Table 5-8: Mud properties ranges for stuck and normal cases related to unconso formations	
Table 5-9: Drilling parameters ranges for stuck and normal cases related to	137

Table 5-10: Mud properties and drilling parameters study values which effect on the appearance of stuck pipe problems through unconsolidated formations137
Table 5-11: Indications for the occurrence of stuck pipe problems for each situation related to unconsolidated formations
Table 5-12: Unconsolidated formations stuck pipe problems preventive actions139
Table 5-13: Mud properties ranges for stuck and normal cases related to mobile formations
Table 5-14: Drilling parameters ranges for stuck and normal cases related to mobile formations
Table 5-15: Mud properties and drilling parameters study values which effect on the appearance of stuck pipe problems through mobile formations
Table 5-16: Indications for the occurrence of stuck pipe problems for each situation related to mobile formations
Table 5-17: Mobile formations stuck pipe problems preventive actions142
Table 5-18: Mud properties ranges for stuck and normal cases related to reactive formations
Table 5-19: Drilling parameters ranges for stuck and normal cases related to reactive formations
Table 5-20: Mud properties and drilling parameters study values which effect on the appearance of stuck pipe problems through reactive formations
Table 5-21: Indications for the occurrence of stuck pipe problems for each situation related to reactive formations
Table 5-22: Reactive formations stuck pipe problems preventive actions145
Table 5-23: Mud properties ranges for stuck and normal cases related to geopressurized formations
Table 5-24: Drilling parameters ranges for stuck and normal cases related to geopressurized formations
Table 5-25: Mud properties and drilling parameters study values which effect on the appearance of stuck pipe problems through geo-pressurized formations146
Table 5-26: Indications for the occurrence of stuck pipe problems for each situation related to geo-pressurized formations
Table 5-27: Geo-pressurized formations stuck pipe problems preventive actions148
Table 5-28: Mud properties ranges for stuck and normal cases related to inadequate hole cleaning
Table 5-29: Drilling parameters ranges for stuck and normal cases related to inadequate hole cleaning
Table 5-30: Mud properties and drilling parameters study values which effect on the appearance of stuck pipe problems due to inadequate hole cleaning149
Table 5-31: Indications for the occurrence of stuck pipe problems for each situation related to inadequate hole cleaning
Table 5-32: Inadequate hole cleaning stuck pipe problems preventive actions151

Table 5-33: Mud properties ranges for stuck and normal cases related to fracture faulted formations	
Table 5-34: Drilling parameters ranges for stuck and normal cases related to fract & faulted formations	
Table 5-35: Mud properties and drilling parameters study values which effect or appearance of stuck pipe problems through fractured & faulted formations	
Table 5-36: Indications for the occurrence of stuck pipe problems for each situated to fractured & faulted formations	
Table 5-37: Fractured & faulted formations stuck pipe problems preventive action	ons.154
Table 5-38: Mud properties ranges for stuck and normal cases related to different sticking problems	
Table 5-39: Drilling parameters ranges for stuck and normal cases related to inadequate hole cleaning	158
Table 5-40: Mud properties and drilling parameters study values which effect on appearance of differential stuck problems	
Table 5-41: Indications for the occurrence of stuck pipe problems for each situated differential stuck problems	
Table 5-42: Differential stuck problems preventive actions.	160
Table 5-43: Keyseat stuck problems indications.	162
Table 5-44: Keyseat stuck pipe problems preventive actions.	162
Table 5-45: Undergauge hole stuck problems indications.	163
Table 5-46: Undergauge hole stuck pipe problems preventive actions	164
Table 5-47: Ledges & doglegs stuck pipe problems indications	164
Table 5-48: Ledges & doglegs stuck pipe problems preventive actions	165
Table 5-49: Green cement stuck pipe problems indications	166
Table 5-50: Green cement stuck pipe problems preventive actions	166
Table 5-51: Junk stuck pipe problems indications.	167
Table 5-52: Junk stuck pipe problems preventive actions	168

List of Figures

Figure 1-1: Drilling problems showing the percent of NPT for well drilled less than 180 m in GOM Shelf gas wells
Figure 1-2: Drilling problems showing the percent of NPT for well drilled from 180 m to 4500 m in GOM Shelf gas wells.
Figure 4-1: Illustration of in-situ stresses in a) Rock formation and b) Drilled formation
Figure 4-2: Process of bridging. (a) Particles gather at the mouth of the fracture,
creating a bridge. (b) Fracture closes as the pressure reaches equilibrium [9]14
Figure 4-3: Predicted stratigraphic sequence for the western desert16
Figure 4-4: A complete loss occurred while drilling fractured limestone and passing through fault
Figure 4-5: The start of losses while drilling which transferred to complete loss20
Figure 4-6: Complete blind drilling to casing shoe point
Figure 4-7: A complete loss cured after spotting HVP loaded with 120 PPB blend LCM22
Figure 4-8: Seepage losses occurred while drilling natural fracture formation with high gallons
Figure 4-9: Seepage losses cured after decreasing gallons while drilling24
Figure 4-10: A previous losses in the section while drilling which had been cured26
Figure 4-11: Trip losses 120 bbls while circulation and losses cured while drilling with HVP sweeps with LCM
Figure 4-12: Seepage losses transferred to partial losses and cured by HVP sweeps loaded with LCM
Figure 4-13: Losses occurred while increasing mud weight during drilling fractured formation
Figure 4-14: A complete loss occurred while drilling fractured formation33
Figure 4-15: Losses cured after LCM pill had been spotted and soaked33
Figure 4-16: A partial losses occurred from the beginning of drilling due to drilling unconsolidated sand formation
Figure 4-17: Try to cure the losses by pumping HVP sweeps while drilling loaded with LCM blends but without success
Figure 4-18: Spotting 50 bbls HVP loaded with LCM and let them soak to get the results later
Figure 4-19: Losses was cured and decreased to 9 bbls / hr
Figure 4-20: Losses increased after hole displaced and partial cured after spotting HVP loaded with LCM
Figure 4-21: Partial losses detected but from surface line leaks not downhole losses 40
Figure 4-22: A complete losses occurred after hole displaced from spud mud to kcl polymer mud
Figure 4-23: Normal losses reached after loading the mud system with LCM and sweeping the hole with HVP loaded with LCM every stand drilled

Figure 4-24: A severe losses occurred while drilling fractured and high porous formation
Figure 4-25: Losses cured after sweeping hole with HVP loaded with LCM with the string moving up and down
Figure 4-26: Number of mud losses problem occurrence versus hole size47
Figure 4-27: Number of mud losses problem occurrence related to formation lithology
Figure 4-28: Formation lithology properties which may be a reason for mud losses problem
Figure 4-29: Number of mud losses problem occurrence related to mud type50
Figure 4-30: Losses classification for mud losses cases
Figure 4-31: Mud losses problems NPT percentage
Figure 4-32: Losses volume verses mud weight related to 17 1/2" hole while drilling with spud mud53
Figure 4-33: Losses volume verses mud weight related to 17 1/2" hole while drilling with Kcl polymer mud54
Figure 4-34: Losses volume verses mud weight related to 12 1/4" hole while drilling with Kcl polymer mud54
Figure 4-35: Losses volume verses mud weight related to 8 1/2" hole while drilling with PERM DRILL mud
Figure 4-36: Losses volume verses mud weight related to 8 1/2" hole while drilling with OBM55
Figure 4-37: Losses volume verses ECD related to 17 1/2" hole while drilling with spud mud.
Figure 4-38: Losses volume verses ECD related to 17 1/2" hole while drilling with Kcl polymer mud
Figure 4-39: Losses volume verses ECD related to 12 1/4" hole while drilling with Kcl polymer mud
Figure 4-40: Losses volume verses ECD related to 8 1/2" hole while drilling with PERM DRILL mud
Figure 4-41: Losses volume verses ECD related to 8 1/2" hole while drilling with OBM
Figure 4-42: Losses volume verses Y.P related to 17 1/2" hole while drilling with spud mud
Figure 4-43: Losses volume verses Y.P related to 17 1/2" hole while drilling with Kcl polymer mud
Figure 4-44: Losses volume verses Y.P related to 12 1/4" hole while drilling with Kcl polymer mud
Figure 4-45: Losses volume verses Y.P related to 8 1/2" hole while drilling with PERM DRILL mud
Figure 4-46: Losses volume verses Y.P related to 8 1/2" hole while drilling with OBM 61
Figure 4-47: Losses volume verses P.V related to 17 1/2" hole while drilling with spud mud

Figure 4-48: Losses volume verses P.V related to 17 1/2" hole while drilling with Kcl polymer mud
Figure 4-49: Losses volume verses P.V related to 12 1/4" hole while drilling with Kcl polymer mud
Figure 4-50: Losses volume verses P.V related to 8 1/2" hole while drilling with PERM DRILL mud
Figure 4-51: Losses volume verses P.V related to 8 1/2" hole while drilling with OBM
Figure 4-52: Losses volume verses W.O.B related to 17 1/2" hole while drilling with spud mud
Figure 4-53: Losses volume verses W.O.B related to 17 1/2" hole while drilling with Kcl polymer mud
Figure 4-54: Losses volume verses W.O.B related to 12 1/4" hole while drilling with Kcl polymer mud
Figure 4-55: Losses volume verses W.O.B related to 8 1/2" hole while drilling with PERM DRILL mud
Figure 4-56: Losses volume verses W.O.B related to 8 1/2" hole while drilling with OBM
Figure 4-57: Losses volume verses flow rate related to 17 1/2" hole while drilling with spud mud
Figure 4-58: Losses volume verses flow rate related to 17 1/2" hole while drilling with Kcl polymer mud
Figure 4-59: Losses volume verses flow rate related to 12 1/4" hole while drilling with Kcl polymer mud
Figure 4-60: Losses volume verses flow rate related to 8 1/2" hole while drilling with PERM DRILL mud69
Figure 4-61: Losses volume verses flow rate related to 8 1/2" hole while drilling with OBM70
Figure 4-62: Losses volume verses RPM related to 17 1/2" hole while drilling with spud mud71
Figure 4-63: Losses volume verses RPM related to 17 1/2" hole while drilling with Kcl polymer mud71
Figure 4-64: Losses volume verses RPM related to 12 1/4" hole while drilling with Kcl polymer mud72
Figure 4-65: Losses volume verses RPM related to 8 1/2" hole while drilling with PERM DRILL mud72
Figure 4-66: Losses volume verses RPM related to 8 1/2" hole while drilling with OBM
Figure 4-67: Losses volume verses ROP related to 17 1/2" hole while drilling with spud mud
Figure 4-68: Losses volume verses ROP related to 17 1/2" hole while drilling with Kcl polymer mud
Figure 4-69: Losses volume verses ROP related to 12 1/4" hole while drilling with Kcl polymer mud