Evaluation of Some Blood Components as Inflammatory Markers in Children with Attention Deficit Hyperactivity Disorder

Thesis

Submitted for Partial Fulfillment of Master Degree in Neuropsychiatry

By

Beshoy Salem Boshra

Diploma of Neuropsychiatry 2017

Under Supervision of

Prof. Dr. Afaf Mohammed Abdel Samei

Professor of Psychiatry
Faculty of Medicine - Ain Shams University

Dr. Dalia Abdel Moneim Mahmoud

Assistant Professor of Psychiatry Faculty of Medicine - Ain Shams University

Dr. Mohamed Hossam El-Din Abdel Moneam

Lecturer of Psychiatry
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2019

Acknowledgment

First and foremost, I feel always indebted to God, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Afaf**Mohammed Abdel Samei, Professor of Psychiatry, Faculty of Medicine - Ain Shams University, for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Dalia Abdel**Moneim Mahmoud, Assistant Professor of Psychiatry, Faculty of Medicine - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mohamed Hossam El-Din Abdel Moneam**, Lecturer of
Psychiatry, Faculty of Medicine - Ain Shams
University, for his great help, active participation
and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Beshoy Salem

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literature	
An Overview on Attention Deficit Hyperactivity	Disorder 6
ADHD and Inflammation	
Subjects and Methods	
Results	
Discussion	
Conclusion	120
Recommendations	121
Strengths and Limitations	122
Summary	
References	
Appendix	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	ADHD Diagnostic criteria According	
Table (2):	Comparison of demographic data groups	
Table (3):	Perinatal history, developmental his family history	-
Table (4):	Scholastic achievement of patients a	
Table (5):	Results of Wechsler and MINI KID s	cales 79
Table (6):	Conner's parents rating scale results	s 80
Table (7):	Inflammatory markers NLR, PLR ar	nd MPV 82
Table (8):	Results of ROC curve representing off points of NLR, PLR and MPV	
Table (9):	Correlation of inflammatory mark the studied parameters	
Table (10):	Relation of NLR with others	
Table (11):	Relation of PLR with others	•
Table (12):	Relation of MPV with others	
Table (13):	Relation of NLR, PLR and MPV to of ADHD	
Table (14):	Relation between NLR and severity symptoms	
Table (15):	Relation between PLR and severity symptoms	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (16):	Relation between MPV and se ADHD symptoms	-
Table (17):	Classification of NLR, PLR and patient group	
Table (18):	Comparison between patient with cut off point and patients with NLF point	R > cut off
Table (19):	Comparison between patient with cut off point and patients with PLF point	R > cut off
Table (20):	Comparison between patient with cut off point and patients with MP point	V> cut off
Table (21):	Uni variate Logistic regression	108
Table (22):	Multivairate Logistic regression	108
Table (23):	The factors of heterogenecity different studies	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	FMRI in ADHD	15
Figure (2):	PET scans showing decreased dopamine transporters in ADHD pati	
Figure (3):	The major components of the stress mediated by the hypothalamic— adrenal (HPA) axis	pituitary–
Figure (4):	Comparison between patients and regard sex.	
Figure (5):	Comparison between patients and regard age.	
Figure (6):	Comparison between patients and regard NLR.	
Figure (7):	Comparison between patients and regard PLR.	
Figure (8):	Comparison between patients and regard MPV.	
Figure (9):	Comparison between patients and regard neutrophil count	
Figure (10):	Comparison between patients and regard platelet count	
Figure (11):	Comparison between patients and regard lymphocyte count	
Figure (12):	ROC curve representing best cut of NLR, PLR and MPV.	-
Figure (13):	Correlation between NLR and VIQ	89
Figure (14):	Correlation between NLR and TIQ	89
Figure (15):	Correlation between NLR and PIQ	89

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (16):	Correlation between NLR ar	-
Figure (17):	Correlation between NLR and count	
Figure (18):	Correlation between PLR and V	IQ 90
Figure (19):	Correlation between PLR and T	IQ 90
Figure (20):	Correlation between PLR and count	
Figure (21):	Correlation between PLR and pl	latelet count 90
Figure (22):	Relation between NLR and birth	n order 92
Figure (23):	Relation between NLR complaints	
Figure (24):	Relation between NLR and (Conners parents rating scale)	•
Figure (25):	Relation between PLR and (Conners parents rating scale)	· · · · · · · · · · · · · · · · · · ·

List of Abbreviations

Abb.	Full term
5-HT	Serotonin
	Adrenocorticotropic hormone
	Attention deficit hyperactivity disorder
	Attention deficit hyperactivity disorder/hyperactive-impulsive type
ADHD-I	Attention deficit hyperactivity disorder/inattentive type
<i>APA</i>	American Psychiatric Association
ASD	Autism spectrum disorder
<i>BD</i>	Bipolar disorder
<i>b-LPH</i>	$b ext{-}lipotropin$
C.S	Cesarean section
C4B complement	Component 4B complement
<i>CBC</i>	Complete blood count
<i>CD</i>	Conduct disorder
CGI-S	Clinical Global Impression Scale
CNS	Central nervous system
COX-2	Cyciooxygenase 2
CPRS-L	Conners' Parent rating scale-long version
<i>CRF</i>	Corticotropin-releasing factor
<i>CRH</i>	Corticotropin-Releasing Hormone
<i>CRP</i>	C- reactive protein
<i>CRS-R</i>	Connres' Rating Scales Revised (CRS-R)
D4 receptor	Dopamine receptor D4
DAT1	Dopamine active transporter
DRD4	Dopamine receptor D4
DRD5	Dopamine receptor D5

List of Abbreviations (Cont...)

Abb.	Full term
DSM-5	Diagnostic and statistical manual of mental disorders
<i>EDTA</i>	Ethylenediaminetetraacetic acid
<i>EEG</i>	Electroence phalogram
F MRI	Functional magnetic resonance imaging
FEP	First episodes psychotic
<i>GABA</i>	G-aminobutyric acid
HDRS	Hamilton Depression Rating Scale
	Hypothalamus–pituitary adrenal
HTR1B	5-hydroxytryptamine receptor 1B
ICD-10	10 th revision of the international statistical classification of diseases and related health problems
<i>IFN</i>	Interferon
<i>Ig</i>	Immunoglobulin
<i>IL</i>	Interleukin
<i>IL-1B</i>	Interleukin 1 beta
<i>IQ</i>	Intelligent quotient
	Immediate release
<i>MCH</i>	Mean corpuscular hemoglobin
<i>MCHC</i>	Mean corpuscular hemoglobin concentration
<i>MCV</i>	Mean corpuscular volume
<i>MDD</i>	Major depressive disorder
<i>MHC</i>	Major histocompatibility complex
MINI KIDS	Mini-International Neuropsychiatric Interview for children and adolescents
<i>MLR</i>	Monocyte to lymphocyte ratio
<i>MPV</i>	Mean platelet volume

List of Abbreviations (Cont...)

Abb.	Full term
MRI	. Magnetic Resonance image
	.Magnetic resonance spectroscopy
NE	
	. Neonatal intensive care unit
	. Neutrophil to Lymphocyte ratio
	.non-steroidal anti-inflammatory drugs
OCD	. Obssessive compulsive disorder
<i>ODD</i>	. Oppositional defiant disorder
<i>PCT</i>	. plateletcrit
PDD	. Pervasive developmental disorder
<i>PET</i>	. Positron emission tomography
PET-CT	. Positron emission tomography-computed
	tomography
<i>PFC</i>	.Pre- frontal cortex
PIQ	. Performance Intelligent quotient
<i>PLR</i>	.platelet to lymphocyte ratio
<i>POMC</i>	.proopiomelanocortin
POPs	. persistent organic pollutants
<i>RDW</i>	.Red cell distribution width
SCID 1	. Structured Clinical Interview for DSM IV Axis I Disorders
SLC6A3	. Solute carrier family 6 (neurotransmitter transporter), member 3
SNAP-25	. Synaptosomal nerve-associated protein 25
SSRI	. Selective Serotonin Reuptake Inhibitors
SUD	. Substance use disorder

List of Abbreviations (Cont...)

Abb.	Full term
T-DSM- IV-S	STurgay DSM-IV-Based Child and Adolescent
	Behavior Disorders Screening and Rating Scale
Th1	Type 1 T-helper cell
<i>Th2</i>	Type 2 T-helper cell
<i>TIQ</i>	Total Intelligent quotient
TLRs	Toll-like receptors
<i>TNF</i>	Tumor necrosis factor
<i>VIQ</i>	Verbal Intelligent quotient
<i>WISC</i>	

INTRODUCTION

ttention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder characterized by persistent symptoms of inattention and/or hyperactivity- impulsivity. There are three subtypes of ADHD, one marked by predominantly inattentive symptoms (ADHD-I), the second by hyperactivity and impulsivity (ADHD-H) and the third display a combination of inattention and hyperactivity (American Psychiatric Association (APA), 2013).

The estimated prevalence of ADHD in childhood has been reported to be 5.3% (Polanczyk et al., 2014). Genetics and environmental factors have been postulated to be risk factors for ADHD, strong genetic influence has been reported for ADHD, with 5-9 times increased risk in the first degree relative of patients. Several authors have proposed an association between ADHD and inflammatory mechanism due to positive findings regarding inflammatory related genes (Anand et al., *2017*).

injected with pro-inflammatory Healthy animals Interleukin-1B (IL-1B) and tumor necrosis factor alpha (TNFa) cytokines demonstrate sickness behavior associated with social withdrawal (Dantzer et al., 2008). In humans, injection of low dose endotoxin deactivates the ventral striatum, a region critical for reward processing, producing anhedonia a debilitating depressive symptoms (Eisenberger et al., 2010).

The positive correlation between medical conditions associated with chronic inflammatory and immunological abnormalities including rheumatoid arthritis, malignancies, diabetes and multiple sclerosis and psychiatric illness suggests the presence of widespread underlying inflammatory process affecting the brain among other organs (Najjar et al., 2013).

Cytokines have also been reported to play a pivotal role in tryptophan metabolism and dopaminergic pathway in the brain, which are also implicated in ADHD. Accordingly, it is conceivable that alteration in pro-inflammatory and antiinflammatory cytokines may be influential in the pathogenesis of ADHD (Anand et al., 2017). Immune competent white blood cells population: monocyte, lymphocyte and neutrophil play a crucial role in systemic inflammatory response to severe infection, injury and poly-trauma. Recently, a general immune response to endotoxaemia has been described by increase of circulating neutrophils and decrease number of lymphocytes (Zahorec, 2001).

Neutrophil to Lymphocyte ratio (NLR) is a new, simple and inexpensive marker of the systemic inflammatory response (Semiz et al., 2014). Few studies have examined NLR in population with mental disorders although it is inexpensive (Cakir et al., 2015). It is calculated as the ratio of neutrophil count to lymphocyte count (Durmus et al., 2015). It correlates with prognosis in distinct disease activity. Neutrophils one of most abundant and important mediators of innate immunity, are professional phagocytes which

mount the acute inflammatory response and act as the first line of defence against invading pathogens (Gao et al., 2015). An association between NLR and chronic stress was demonstrated in animal studies (Erminio & Bertoni, 2009). Increased level of NLR was reported to be indicative of enhanced cytokine production (Turkmen et al., 2012).

Platelets are involved in the secretions of proinflammatory as well as anti-inflammatory process. The platelet to lymphocyte ratio (PLR) is calculated as the ratio of platelet count to lymphocyte count and it is widely used simple marker that seems to be related with cardiovascular diseases, malignancies, chronic diseases and infection (Topal et al., **2015**). PLR is a novel index reflecting a systemic inflammatory burden that combines prognostic values of an individual platelet and lymphocyte count (Ommen et al., 2002). PLR demonstrated as a prognostic factor in patients with systemic diseases and cancer. To date, few studies have examined the PLR in psychiatric disorders (Yildis et al., 2016). Platelets may reflect biochemical changes in the brain under different mental conditions (Camacho & Dimsdale, 2000).

Mean platelet volume (MPV) has been studied as inflammatory marker in relation to the disease activity. MPV may be increased in mild inflammation due to the emergence of large platelets in the peripheral circulation and conversely, may be decreased in the severe inflammation because of the consumption of large platelet in the inflammatory area (Lee et

al., 2015). MPV is an accurate measure of platelet size, is considered a marker and determinant of platelet function. MPV can be a potentially useful prognostic biomarker in patients with cardio-vascular diseases (Yorbik et al., 2014).

There are few studies that have examined the association between psychiatric symptomatology and inflammation in children and adolescent (Mitchell & Goldstein, 2014). Specifically very few studies have examined the association between inflammatory state and ADHD in children and adolescents, and these have yielded conflicting data (Anand et al., 2017).