The effect of isotretinoin administration and withdrawal on submandibular salivary gland of albino rats (Histological and Immunohistochemical study)

Thesis

submitted in partial fulfillment for Master Degree in **Oral Biology**

By Lamia Abdel Aziz Amin

B.D.S (2010)

Faculty of Dentistry, Cairo University Demonstrator in The British University in Egypt, Oral Biology Department

Faculty of Dentistry
Ain Shams University
2019

Supervisors

Prof. Dr. Ahmed M. Halawa

Professor of Oral Biology Department
Head of Oral Biology Department
Ain Shams University

Prof. Dr. Reham Magdy Amin

Professor of Oral Biology
Ain Shams University

Dr. Iman A. Fathy Mounir

Lecturer of Oral Biology Ain Shams University

Table of Contents

﴿ قَالَ لَهُ مُوسَى هَلْ أَتَّبِعُكَ عَلَى أَنْ تُعَلِّمَنِ مِمَّا عُلِّمْتَ رُشْدًا ﴾

صدق الله العظيم

﴿سورة الكهف؛ الآيه 66﴾

Acknowledgement

First, thanks to **ALLAH**, the most gracious, the most merciful. The completion of this thesis wouldn't have become possible without the help and support of several people to whom I'm greatly in debt. I believe it is my duty to register here my deep gratitude to them.

I would like to thank **Prof. Dr. Ahmed M. Halawa**, Professor and head of Oral Biology Department, Faculty of Dentistry, Ain Shams University, for his support, continuous encouragement and appreciated suggestions that guided me to accomplish this work.

I want to express my deepest gratitude to **Prof. Dr. Reham Magdy Amin**, Professor of Oral Biology, Faculty of Dentistry, Ain Shams University, for her considerable support and valuable supervision. Her deep knowledge, sincere suggestions and contributions with her constant follow up have made this work fulfilled.

Special thanks to Dr. **Iman A. Fathy Mounir,** Lecturer of Oral Biology, Faculty of Dentistry, Ain Shams University, for her continuous directions and support throughout the whole work.

Many thanks to all the members of the Oral Biology Department, Faculty of Dentistry, Ain Shams University for offering lots of help.

Finally, to all my wonderful friends in the department and the BUE family each one of you was more like a brother or sister to me, your help is greatly appreciated.

Dedication

First of all, I am very grateful to ALLAH for giving me the strength to accomplish this work and for the endless blessings bestowed upon me.

To the most amazing husband anyone can wish for, without his outstanding help and support I wouldn't have finished my work.

To my lovely kids Ahmed and Alia I love you so much you mean the world to me.

To my mother and father, words will never express my gratitude to both of you, I am who I am because of them, their sacrifices and belief in me. I wish I can always live up to their expectations and make them proud.

To my brothers and their families, having them around is a true blessing.

To my aunt and my mother in law, they were like second mothers to me and always by my side. Thank you can never be enough for what they have done.

To my big family, here is a chance to show you how proud I am to belong to such a loving, respectful and honorable family.

Table of Contents

List of Abbreviations	i
List of Figures	iii
List of Tables	v
Abstract	vi
Introduction	1
Review of Literature	3
Importance of saliva	
Insufficient secretion of saliva	6
Drugs as an etiology for xerostomia	8
Isotretinoin	10
Apoptosis	21
Caspases	23
Histology of submandibular salivary gland	24
Aim of the study	32
Materials and methods	33
Results	44
Histological Results (H&E stained sections)	44
Immunohistochemical results	67
Statistical Analysis	72
Discussion	75
Summary	85
Conclusions	90
Recommendations	91
References	
Arabic Summary	

List of Abbreviations

Abbreviation	Meaning	
--------------	---------	--

ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
BV	Blood vessel
Cl	Chloride
CT	Connective tissue
dl	Deciliter
ED	Excretory ducts
EM	Electron microscope
GCT	Granular convoluted tubules
gm	Gram
H&E	Hematoxylin and Eosin
H1	Histamine 1 receptor
H_2O_2	Hydrogen peroxide
HCl	Hydrochloric acid
HCO ₃	Bicarbonate
ID	Intercalated ducts
Ig A	Immunoglobulin A
K	Potassium
kg	Kilogram
Lab	Laboratory
LM	Light microscope
mag	Magnification
mg	Milligram
Na	Sodium
°C	Celcius
Orig.	Original
pН	Potential Hydrogen
RBCs	Red blood cells
ROS	Reactive oxygen species

St.D	Striated ducts
SD	Standard deviation
SG	Salivary gland
SMG	Submandibular salivary gland
T3	Triiodothyronine
T4	Thyroxine
TEM	Transmission electron microscope
TNF	Tumor necrosis factor
TRAIL	TNF related apoptosis inducing ligand
TSH	Thyroid stimulating hormone

List of Figures

Figure	Description	Page
1	Isotretinoin drug.	34
2	The olive oil.	34
3	ZEISS Primo Star light microscopy.	40
4	A plate showing the immunohistochemical evaluation (original mag. X40).	43
5	A photomicrograph of rat SMG from control group (subgroup A) (H&E , orig. mag.X100).	46
6	A photomicrograph of rat SMG of the control group (H&E , orig. mag.X400).	47
7	A photomicrograph of rat SMG of the control group (H&E , orig. mag.X400).	48
8	A photomicrograph of rat SMG of control group (H&E , orig. mag.X400)	49
9	A photomicrograph of rat SMG of subgroup II A (H&E orig. mag. X100)	52
10	A photomicrograph of rat SMG of subgroup IIA (H&E orig. mag. X400)	53
11	A photomicrograph of rat SMG of the subgroup IIA (H&E , orig. mag. X400)	54
12	A photomicrograph of rat SMG of subgroup IIA (H&E orig. mag. X400)	55
13	A photomicrograph of rat SMG of subgroup IIA (H&E , orig. mag.X400).	56
14	A photomicrograph of rat SMG of rat of subgroup IIB (H&E orig. mag. X100)	58
15	A photomicrograph of rat SMG of sub group IIB (H&E orig. mag. X400).	59
16	A photomicrograph of rat SMG of subgroup IIB (H&E orig. mag. X400)	60
17	A photomicrograph of rat SMG of subgroup IIB (H&E orig. mag. X400)	61
18	A photomicrograph of rat SMG of subgroup IIC (H&E orig. mag. X100)	63
19	A photomicrograph of SMG of subgroup IIC)(H&E orig. mag.X400)	64

20	A photomicrograph of rat SMG of subgroup IIC (H&E orig. mag. X400)	65
21	A photomicrograph of rat SMG of subgroup IIC (H&E orig. mag. X400)	66
22	An immunostained photomicrograph of control group (anti active caspase 3 orig. mag. X400)	68
23	An immunostained photomicrograph of subgroup IIA (anti active caspase 3 orig. mag. X400)	69
24	An immunostained photomicrograph of subgroup IIB (anti active caspase 3 orig. mag. X400)	70
25	An immunostained photomicrograph of subgroup IIC (anti active caspase 3 orig. mag. X400)	71
26	Bar chart representing mean caspase 3 area fraction in submandibular salivary gland cells of the four groups	74

42

73

List of Tables

4

5

analysis

groups (Mean \pm SD)

Table	Title	Page
1	Summary of some studies on the use of Isotretinoin clinically	15
2	Showing summary of the doses given for the control group	36
3	Showing summary of the doses given to experimental groups	36

Showing the steps of immunohistochemical image

Showing comparison of AF among different studied

Abstract

Background: Isotretinoin is the most common drug used in acne treatment worldwide, and despite its wide range of dermatological indications, it has many side effects on different body tissues.

Aim of the study: To investigate the effect of Isotretinoin on rat submandibular salivary gland histologically and immunohistochemically.

Materials and methods: Forty-two adult male albino rats were used, divided into control and experimental groups. The control group (group I) was further subdivided into 3 subgroups: subgroup IA, IB and IC. Referring to the experimental group (group II) was also further subdivided into three subgroups: subgroup IIA received 1.5 mg/kg/day Isotretinoin orally for 28 days, subgroup IIB received same dose as subgroup IIA and duration but were left for recovery for one week and subgroup IIC received same dose and duration but were left for recovery for 2 weeks.

Histological of **Results:** examination the subgroup (Isotretinoin group) showed that acinar cells demonstrated some histological alterations including pyknotic, hyperchromatic and with variable sized shaped nuclei vacuolations. The ducts showed some signs of degeneration with loss of their normal cellular outlines. However, there was some improvement in subgroup IIB that escalated in subgroup IIC that was almost close to the control group or the normal state.

Apoptotic changes expressed by anti-active caspase 3 were highest in subgroup IIA and statistical results showed statistical significance between studied groups.

Conclusion: The use of Isotretinoin leads to histological alterations in submandibular salivary glands of rats by inducing apoptotic effect on their cells.

Introduction

Saliva is a most valuable oral fluid that is critical to the preservation and maintenance of oral health, it is often taken for granted and receives little attention until quantity or quality is diminished. Saliva is a clear, slightly acidic mucoserous secretion obtained from the major and minor salivary glands. The submandibular salivary gland is one of the major salivary glands, it is a compound tubuloalveolar exocrine gland that contributes to approximately two thirds of salivary output (**De Almeida et al., 2008**).

When the amount of saliva that bathes the oral cavity is reduced, a condition known as Xerostomia develops commonly known as dry mouth. The use of xerostomic medications is the most frequently reported cause of xerostomia (Guggenheimer and Moore, 2003).

Systemic retinoids are natural or synthetic derivatives of vitamin A, one of which is isotretinoin (13 cis retinoic acid) an effective and increasingly popular treatment for acne vulgaris. Isotretinoin is approved as treatment of severe acne resistant to standard therapy. It has been prescribed to many patients worldwide since it was first introduced in 1982 (Borovaya et al., 2014; Li et al., 2012).

Isotretinoin is used for an extensive array of other dermatological conditions including photoaging, rosacea, seborrheic dermatitis, folliculitis, granuloma annulare, periorificial dermatitis, a variety of disorders of keratinization, and sarcoidosis (Charakida et al., 2004).

Although isotretinoin is a potent anti-acne drug and has many beneficial uses, it has a multitude of side effects, some of them are well known and predictable as xerosis, xerostomia and cheilitis (Brzezinski et al., 2017). Also, it is a known teratogenic medication and its prohibited in pregnancy. Besides some less common side effects as depressive and suicidal issues (Oliveira et al., 2018). Thus studying its effect on the submandibular salivary gland was the main scope of this study.

Review of Literature

Salivary glands are fundamental organs that produce and secrete saliva to the oral cavity, they are essential for maintaining the oral cavity homeostasis. Saliva is a multifunctional fluid, it provides the mucosal lubrication, salivary electrolytes. antibacterial components and different enzymes to protect and maintain the oral mucosa and teeth surface integrity (Feller et al., 2013; Carpenter, 2013) Therefore, the secretory function of salivary glands is extremely important for maintaining the oral health and its partial or total loss due to gland loss or degeneration is very critical (Vissink et al., 2010; Pringle et al., 2013; Nelson et al., 2013; Holmberg and Hoffman, 2014)

One of the main functions of salivary glands is providing the continuous flow of saliva into the oral cavity to keep the oral mucosa in a moist state so making it less susceptible to abrasion and to remove micro-organisms, desquamated epithelial cells, leucocytes and food debris during swallowing process. (**Dawes**, 2012).

Although saliva is about 99% water and 1% organic and inorganic molecules, a very important difference between them as two fluids is that saliva contains mucins "heavily glycosylated glycoproteins that are produced by the submandibular and