

Intravenous dexmedetomidine vs intravenous tramadol for control of postspinal shivering in patients undergoing knee arthroscopy: a randomized doubleblind placebo controlled trial

Chesis

For partial fulfilment of Master degree in anesthesiology

By Ahmed Ashraf Anwar Ahmed

M.B. B.Ch. Ain-Shams University Faculty of Medicine – Ain Shams University

Under Supervision of

Prof. Dr. Hesham Mohammed Elazzazi

Professor of Anesthesia, Intensive Care & Pain Management, Faculty of Medicine – Ain Shams University

Assist, Prof. Dr. Ibrahim Mamdouh Esmat

Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine – Ain Shams University

Dr. Amr Ahmed Ali Kassem

Lecturer of Anesthesia, Intensive Care & Pain Management, Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2019

سورة البقرة الآية: ٣٢

First, all praises to Allah, the most gracious, the most merciful and blessing and peace to his messenger.

My words fail to express my sincere thanks and deepest gratitude to **Prof. Dr. Hesham Mohammed Elazzazi,** Professor of Anesthesia, Intensive Care & Pain Management, Faculty of medicine Ain Shams University, for his patience and valuable scientific guidance and support through this work.

I am also, greatly honored to express my highest appreciation and gratitude to Ass. Prof. Dr. Ibrahim Mamdouh Esmat, Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of medicine Ain Shams University, for his professional co-operation, meticulous supervision, generous support and encouragement in every step in this work.

My sincere thanks and deepest gratitude to Dr. Amr Ahmed Ali Kassem, Lecturer of Anesthesia, Intensive Care & Pain Management, Faculty of medicine Ain Shams University, for his dynamic effort, valuable suggestions, great help and offering me much of his time and effort especially in the field of image analysis used in this work.

No words could ever express my extreme thanks to my ever-giving family specially **my mother and father,** for their endless help, patience, care, support and encouragement. To them, I owe all the success I've reached.

Words fail to express my love, respect to **my dear wife** for her support and total understanding.

Lastly, all the love to my daughter **Celine**.

Ahmed Ashraf

Page No.

LIST OF CONTENTS

Title Page
List of Contents
List of AbbreviationsII
List of TablesIV
List of FiguresV
AbstractVI
Introduction1
Aim of the Work3
Review of Literature4
 Pathophysiology of Shivering4
Pharmacology of Dexmedetomidine25
Pharmacology of Tramadol40
Patients and Methods 49
Results
Discussion
Summary
Conclusion
References
1 الملخص العربي

\$

LIST OF ABBREVIATIONS

·	LIOI OI /IDDILLVIAIIONO
Abb.	Full Term
5HT	: serotonin (5-hydroxytryptamin)
AVP	: Antidiuretic action of vasopressin
BIS	: The bispectral
BP	: Blood pressure
Ca ⁺⁺	: Calcium Ion
cAMP	: Cyclic adenosine monophosphate
CRPS	: Complex regional pain syndrome
CYP	: Cytochrome
ECG	: Electrocardiography
EEG	: Electroencephalography
EMG	: Electromyography
GABA	: Gamma-Aminobutyric acid
i.v	: Intravenous
ICU	: Intensive care unit
\mathbf{K}^{+}	: Potassium Ion
M	: Menthol
MAP	: Mean arterial pressure
N2O	: Nitrous oxide
NMDA	: N-methyl-D-aspartate
OTs	: Operation theatres

LIST OF ABBREVIATIONS

Abb.	Full Term
PAS	: Post anesthesia shivering
SAB	: Sub-arachnoid block
SpO_2	: Saturation of oxygen
SSRI	: Selective serotonin reuptake inhibitors
TMN	: Tuberomammillary nucleus
TRP	: Transient Receptor Potential
V	: Vanilloid
VLPO	: Ventrolateral preoptic nucleus

LIST OF TABLES

Table No.	Title	Page No.
Table (1): Demogr	raphic characteristics:	56
•	ntolic blood pressure readings and mmHg)	_
	stolic blood pressure readings asmmHg)	_
	an arterial pressure readings an mmHg)	_
	art rate readings among the stud	
Table (6): The O ₂ s	saturation readings among the s	tudied groups61
•	y temperature readings among t	
Table (8): The inci	idence of shivering among the	studied groups63
Table (9): The side	e effects among the studied gro	ups:64

LIST OF FIGURES

Figure No.	Title	Page No.
Fig.(1): EMG - tonic -	pattern of shivering	6
Fig.(2): EMG - clonic	- pattern of shivering	6
Fig.(3): Neural pathwa	ys involved in shivering	10
Fig.(4): Hypothalamic	thermoregulation	11
Fig.(5): Frequency of i	intensity of shivering in warm a	nd cold bupivacaine
groups		20
Fig.(6): Flow chart of t	he studied cases	55
Fig.(7): SBP among th	ne studied groups	57
Fig.(8): DBP among th	ne studied groups	58
Fig.(9): MAP among th	ne studied groups	59
Fig.(10): Heart rate rea	adings among the studied group	s60
Fig.(11): O ₂ saturation	among the studied groups	61
Fig.(12): Axillary temp	perature readings among the stud	died groups62
Fig.(13): The incidence	e of shivering among the studie	d groups63
Fig.(14): The side effe	ects among the studied groups	64

ABSTRACT

Background: shivering, the rate of which in regional anaesthesia is 39% is an undesired complication seen intra and postoperatively. Aim: this study aimed to compare the ability of preventing post spinal anesthesia shivering by i.v dexmeditomedine and tramadol. **Methods**: A total of 75 patients with ASA I – II, aged 18-60 years and undergoing elective knee arthoscopy surgery under spinal anesthesia were divided into three groups randomly, before spinal anesthesia by 20 mintues 0.5 mcg/kg dexmeditomedine i.v was applied to D group (n=25), 0.5 mg tramadol i.v was applied to T group (n=25) and 0.9% normal saline was applied to group C (n=25) in 10 minutes. The hemodynamics, oxygen saturation, axillary temperature, shivering, sedation score and side effects were evaluated and recorded intraoperatively every 5 minutes. **Results:** there was significant difference between group D and T in compare with C group as regard the incidence of shivering (p= 0.031) and there were significant differences between D group and other groups as regard grade of shivering (p=0.01), there was significant difference between D group and others as regard sedation score it was higher in D group. Nausea and vomiting was significant higher in T group in compared to other groups. Conclusion: The current study revealed that prophylactic i.v dexmeditomedine 0.5 mcg/kg was effective as i.v tramadol 0.5mg/kg in prevention post spinal shivering in patients undergoing knee arthroscopy compared to the control group.

Key words: Arthoscopic surgery, dexmeditomedine, tramadol, shivering, spinal anesthesia.

Introduction

Shivering is known to be a frequent complication, reported in 40 to 70 % of patients undergoing surgery under regional anesthesia. Post-anesthetic shivering (PAS) is spontaneous rhythmic, oscillating, thermo-like involuntary, muscle hyperactivity that increases metabolic heat production up to 600 % after general or regional anesthesia (Bhattacharya et al., 2003).

This unpleasant and undesirable complication occurring after sub-arachnoid block (SAB) secondary to vasodilatation due to sympathetic blockade (Buggy et al., 2000).

Shivering occurs mainly in hypothermic patients but may also occur in normothermic. Shivering leads to feelings of discomfort in the patient as well as an increase in oxygen consumption, carbon dioxide production, catecholamine release, cardiac output, intraocular pressure and complications such as tachycardia and hypertension(Alfonsi, 2001).

In addition to this, shivering may affect accurate monitoring by causing artifacts in the monitor (Sessler, 2001).

Shivering also increases intracranial pressure, and may contribute to increased wound pain, delayed wound healing (Katyal et al., 2002), and delayed discharge from post-anesthetic care (Kranke et al., 2002).

Dexmedetomidine, a centrally acting alpha 2 adrenergic agonist, has been used as a sedative agent and is known to reduce the shivering threshold. Various studies have been performed using dexmedetomidine in the prophylaxis of postoperative shivering (Usta et al., 2011).

During the last decade, tramadol has become a favored and commonly used drug for post-spinal anesthesia shivering. However, it has many adverse effects like nausea, vomiting, dizziness etc., which cause further discomfort to the patient (Shukla et al., 2011).

AIM OF THE WORK

The aim of the study was to compare the efficacy of Intravenous (i.v) Dexmedetomidine and i.v Tramadol in the treatment of postspinal anesthesia shivering.

Review of Literature Pathophysiology of Shivering

Definition:

Shivering is an involuntar, spontaneous, oscillatory mechanical activity of skeletal muscle associated with increased oxygen consumption, this can be as much as 600% (*Honarmand et al.*, 2008).

Amoung the various causes, shivering can be divided into thermoregulatory and non-thermoregulatory in nature (Witte et al., 2002).

Grads of Shivering:

Crossley and Mahajan have graded the intensity of (PAS) using the following scale:

- 0 =No shivering.
- 1 = No visible muscle activity but piloerection, peripheral vasoconstriction, or both are present (other causes excluded);
- 2 = Muscular activity in only one muscle group;
- 3 = Moderate muscular activity in more than one muscle group but no generalized shaking;
- 4 = Violent muscular activity that involves the whole body (*Crossley et al., 1994*).

A scale more specific to neuraxial anaesthesia would be:

- 0 =No shivering.
- 1 = Shivering not interfering with monitoring or causing patient distress.
- 2 = Shivering interfering with monitoring or causing patient distress (*Crowley et al.*, 2008).

Also a scale that we used in the current study was Tsai and Chu Scale:

- 0= No shivering;
- 1= Piloerection or peripheral vasoconstriction but no visible shivering;
- 2= Muscular activity in only one muscle group;
- 3= Muscular activity in more than one muscle group but not generalized;
- 4= Shivering involving the whole body (*Tsai* et al., 2001).

Shivering Patterns:

There is two types of shivering patterns have been observed following general anaesthesia and also confirmed by Electromyography (EMG) assessment.

The first is a synchronous "waxing and waning" at a frequency of 4 -8 cycles/min and is of a tonic nature associated with true thermoregulation shivering as seen in unanaesthetised volunteers exposed to cold environments

The second is a clonic pattern of shivering occurring 5-7hz associated with uninhibited spinal reflexes as seen in spinal cord transection, as seen in a study with 0.2-0.4 end-tidal isoflurane concentration (sessler et al.,1991).

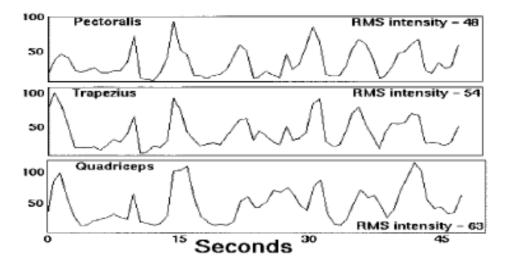


Fig.(1): EMG - tonic - pattern of shivering (Witte et al., 2002).

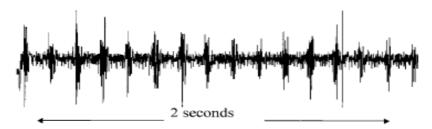


Fig.(2): EMG - clonic - pattern of shivering (Witte et al., 2002).