BIOCHEMICAL AND BIOTECHNOLOGICAL STUDIES FOR SOME MICROORGANISMS

By

FATMA ABDULAZIZ ALI

B.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agricultural Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2019

Format Reviewer

Vice Dean of Graduate Studies

APPROVAL SHEET

BIOCHEMICAL AND BIOTECHNOLOGICAL STUDIES FOR SOME MICROORGANISMS

M.Sc. Thesis In Agric. Sci. (Agricultural Biochemistry)

By

FATMA ABDULAZIZ ALI

B.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2011

APPROVAL COMMITTEE

Dr. DESOUKY A. M. ABD-EL-HALEEMResearcher Professor of Biotechnology, Genetic Eng. Biot. Res. Inst Burj Al-Arab, Alex.
Dr. AHMED MAHMOUD ABOUL-ENEIN
Professor of Biochemistry, Fac. Agric., Cairo Univ.
Dr. GAMAL SAYED EL-BAROTY
Professor of Biochemistry, Fac. Agric., Cairo Univ.
Dr. FATEN ABOUL ELELLA
Professor of Biochemistry, Fac. Agric., Cairo Univ.

Date: 27/11/2019

SUPERVISION SHEET

BIOCHEMICAL AND BIOTECHNOLOGICAL STUDIES FOR SOME MICROORGANISMS

M.Sc. Thesis
In
Agric. Sci. (Agricultural Biochemistry)

 $\mathbf{B}\mathbf{v}$

FATMA ABDULAZIZ ALI

B.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ., 2011

SUPERVISION COMMITTEE

Dr. GAMAL SAYED EL-BAROTY
Professor of Biochemistry, Fac. Agric., Cairo University

Dr. FATEN ABOUL ELELLA
Professor of Biochemistry, Fac. Agric., Cairo University

Dr. HASSAN MOAWAD
Researcher Professor of Agriculture microbiology, N. R. C.

Name of candidate: Fatma Abdulaziz Ali Degree: M.Sc.

Title of Thesis: Biochemical and Biotechnological Studies for some

Microorganisms.

Supervisors: Dr. Gamal Sayed El-Baroty

Dr. Faten Abou Elella Dr. Hassan Moawad

Department: Agricultural Biochemistry **Approval:** 27/11/2019

ABSTRACT

In order to obtain microorganisms for degradation of the agricultural wastes, six native Egyptian fungal strains were isolated, morphologically identified and screened for cellulose biodegradation potential which was determined as endoglucanase or as carboximethylcellulase (CMCase) producers. The most promising isolate (Aspergillus terreus) with cellulolytic activity 2.26 U/mL was selected for molecular characterizations based on sequencing of internal transcribed spacer (ITS). The result confirmed that the strain is 99.8% homology with A. terreus. Further optimization experiments revealed that 35°C is the optimum temperature for cellulase production and raised the enzyme activity up to 3.19 U/mL. Out of two organic nitrogen sources; peptone and yeast extract, the peptone at concentration 6g/l was found to be the optimum nitrogen source for cellulase production with the highest activity 4 U/mL. Whereas, the different four carbon sources: microcellulose, corn stalks, wheat straw and rice straw showed significant differences in the enzyme activity with values 11.07, 9.68, 7.87 and 3.71 U/mL, respectively at pH 3. The maximum enzyme activity was recorded to be within 5-7 days of incubation, depending on the type of carbon sources. Eventually, the optimization of different incubation conditions raised cellulolytic activity from 2.26 U/mL up to 11.18 U/mL. Then the enzyme was submitted to three purification steps. Ammonium sulfate fractionation raised the specific activity from 394 U/mg of the crude enzyme up to 574 U/mg. The next step was dialysis, which elevated the specific activity to 895 U/mg. The last step was gel filtration using Sephadex G-25. The Sephadex increased the specific activity to 1262.7 U/mg. To confirm the enzyme purity, SDS-PAGE electrophoresis was carried out and the enzyme appeared as a single band on the gel with molecular weight ~66kDa.

key words: Aspergillus terreus, corn stalk, endoglucanase, purification, rice straw, SDS-PAGE, wheat straw.

DEDICATION

I dedicate this work to my parents, my brothers, sisters and to my greatest teacher ever; my cousin Dr. Omima Mohammed for their patience and help, for all the support they lovely offered before and during my post-graduate studies.

ACKNOWLEDGEMENT

I am greatly indebted to **Dr. Gamal Sayed El-Baroty** Prof. of Biochemistry, Faculty of Agriculture, Cairo University for his supervision, great help, faithful guidance and continuous encouragement throughout this work. My appreciation and great thanks are extended to Or. Faten Abou Elella Prof. of Biochemistry, Faculty of Agriculture, Cairo University for her supervision, guidance and help throughout this work. Grateful appreciation to Dr. Hassan Moawad, Researcher Professor of Agricultural microbiology, National Research center for his supervision, guidance and help throughout this work. Also I wish to express my sincere thanks, deepest gratitude and appreciation to Dr. Talaat Elsebai, Researcher of Microbiology, Department of Agricultural Microbiology, National Research Center, for the extremely good research facilities and construction supervision throughout the work. In addition, many thanks to Or. Amr Abdelmotagaly Nassrallah, Lecturer of biochemistry, Faculty of Agriculture, Cairo University, for his great help and support through the work.

Grateful appreciation is also extended to all staff members of my Biochemistry Department, Faculty of Agriculture, Cairo University. And all staff members of the Department of Agricultural Microbiology of the National Research Center.

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. Agricultural wastes	
a. Agricultural wastes structure	
b. Microbial degradation of agro-wastes	
2. Cellulolytic microorganisms	
a. The most active cellulolytic Microorganisms	
b. Aspergillus terreus	
3. Fungal Cellulases	
a. Isolation of cellulolytic fungi	
b. Identification of cellulolytic fungi	
c. Optimization of cellulase enzyme production	
d. Purification of cellulases	
MATERIALS AND METHODS	
1. Reagent and chemicals	
2. Substrates and media	
3. Isolation of fungi strains from soil	
4. Morphological identification of the isolates	
5. Inoculums preparation	
6. Enzyme production	
7. Collection and storage of the samples	
8. Determination of the enzyme activity	
a. Reagents	
b. Procedure	
9. Enzyme characterization	
a. Temperature	
b. Nitrogen sources	
c. Initial culture pH and carbon sources	
d. Enzyme production progress with time	
10. Molecular identification of A. terreus	••••••
11. Scanning electron microscopy (SEM) analysis	
12. Partial purification of the crude enzyme	
a. Ammonium sulfate precipitation	
b. Dialysis	
· J ·· · · · · · · · · · · · · · · · ·	•

CONTENTS (continued)

c. Gel filtration
13. Protein Determination
14. The specific activity assay
15. Precipitation of protein
16. SDS-PAGE of the purified enzyme
a. Reagents
b. Procedure
17. Statistical analysis
RESULTS AND DISCUSSION
1. Isolation of fungi strains from soil
2. Morphological Identification
3. Screening of CMCase activity
4. Optimization of A. terreus Endoglucanase
a. Effect of temperature on Endoglucanase enzyme activity
b. Effect of nitrogen source
c. Effect of initial culture pH and carbon sources
d. Optimization of incubation time
5. Molecular identification of A. terreus strain
6. Scanning electron microscopy (SEM) analysis
7. Enzyme purification
a. Precipitation of cellulase with ammonium sulfate
b. Dialysis
c. Gel filtration
8. SDS-PAGE of the purified enzyme
CONCLUSION
SUMMARY
REFERENCES
ARABIC SUMMARY.

LIST OF TABLES

No.	Title	Page
1.	Identification characteristics and keys of the isolated fungal strains	52
2.	CMCase activity of six fungal isolates	55
3.	The CMCase enzyme activity during 10 days of incubation at different temperatures	56
4.	The CMCase enzyme activity during 10 days of incubation different nitrogen sources	58
5.	The CMCase activity of each ammonium sulfate fraction	68
6.	Purification profile of CMCase enzyme from <i>A. terreus</i>	67

LIST OF FIGURES

No.	Title	Page
1.	Basic structure of cellulose units and a simple illustration of cellulose microfibril	9
2.	Schematic structure of a cellulose fibril containing crystalline and amorphous regions	10
3.	A representation of lignin formation	11
4.	Schematic symbol of the hydrolysis of amorphous and microcrystalline cellulose	23
5.	Mechanism of the cellulose hydrolysis glucose via cellulases	25
6.	The growth profiles of the isolated strains on PDA plates	50
7.	Microscopic feature of the six isolated fungal strains	51
8.	Effect of temperature on the cellulase enzyme activity	56
9.	Effect of addition of some nitrogen sources on cellulase activity	59
10.	Effect of different carbon sources on CMCase activity	61
11.	CMCase activity during incubation with different carbon sources	63
12.	Photograph of ITS-DNA amplified band for fungal strain (<i>A. terreus</i>)	64
13.	Phylogenetic tree the strain A. terreus	65
14.	Scanning electron microscopy images agro-waste	66

LIST OF FIGURES (continued)

15.	The protein concentration and the enzyme activity for each of the ammonium sulfate (AS) fractions	69
16.	The calculated specific activity of each ammonium sulfate (AS) fraction	70
17.	The enzyme activity and the protein concentration of each gel filtration fraction	
18.	The specific activity of each gel filtration fraction	75
19.	SDS-PAGE of the purified enzyme against the protein marker	

INTRODUCTION

In Egypt, the agricultural wastes cause several problems; they can be incinerated in the field creating air and soil pollution problems. The most crops producing the highest quantities of wastes are rice (rice straw), sugarcane (sugarcane bagasse), corn (corn cobs), cotton (cotton straw), and wheat (wheat straw), banana and orange peels (Shaaban and Nasr, 2018).

The volume of the agricultural wastes is estimated by about 35 million tons per year, of which about 23 million tons of vegetarian wastes (4 MT of corn wastes, 6 MT of wheat wastes, 3 MT of rice straw and others) are produced annually (FAO, 2001and Ministry of State for Environmental Affairs, 2017).

A massive amount of these agricultural wastes is burning every year over Egypt's skies in October and November, which causes a black smog and health problems such as respiratory diseases and allergies (Abdulrahman and Huisingh, 2018). It is clearly this practice also, not environmentally sustainable, which lead to emission of greenhouse gases (GHGs) like carbon dioxide, methane and nitrous oxide. GHGs can trap the heat in the atmosphere and cause the greenhouse effect (Mathur and Srivastava, 2019).

Recently, these Agro-wastes can beneficially be used, not incinerated or disposed in a land fill. Agricultural wastes are mainly composed of lignocellulosic materials remained after collecting the valuable parts of crops. Lignocellulosic constitutes of certain carbohydrates in the form of cellulose (35- 45%) and hemicellulose

(25-40%). In spite of the availability of large amounts of the agricultural wastes, Egypt suffers from a lack in the materials of industrial values, green biofuel and in animal feed, and is imports to uses of them annually to fill these gaps. So, it has become necessary to activate the attention to recycle the agricultural wastes of the crops that represent a large proportion of wastes. It is necessary, also, to activate the most suitable means of converting those wastes into materials with an economic value (Shaaban and Nasr, 2018).

The strategies of biotechnology techniques are used to convert these agricultural wastes into valuable products by degradation of cell wall cellulosic materials, with cellulase enzymes system. Various microorganisms such as aerobic and anaerobic bacteria, white rot fungi, soft rot fungi, and anaerobic fungi can produce complete active cellulase enzyme systems. Microorganisms frequently produce multiple of cellulase types that vary in their molecular characteristics. Fungal native enzymes are in the top of common commercially available cellulases enzymes, as well most of industrial cellulases are produced by *Trichoderma* and *Aspergillus* species (Behera and Ray, 2016).

The cellulase enzyme system comprising; endoglucanases (EG, EC3.2.1.4), exoglucanase or cellobiohydrolases (CBHI and CBHII, EC3.2.1.91), and β -glucosidases (BGL, EC 3.2.1.21). These enzymes act together in cascade to degrade cellulose into mono sugar units (glucose) (Srivastava *et al.*, 2018a).

The production of cellulolytic and hemicellulolytic enzymes on economical scale is being more important for applications in the textile industry for cotton softening and denim finishing, in laundry detergents for color care and cleaning, in the food industry for mashing, in the pulp and paper industries for drainage improvement and fiber modification, animal feeds production and they even used for biofuel and pharmaceutical applications (Shah *et al.*, 2015a).

To avoid agro-wastes problems in Egypt, this study aimed to isolate some native Egyptian fungi strains which have high ability to produce cellulase enzymes and identify the superior cellulase producer isolate by sequencing of the ribosomal ITS region. To achieve this aim, different cultivation media contained varies agricultural wastes were used. Also the physical growth conditions of the fungal strains were optimized and compared in terms of the cellulase enzyme activity. Additionally, the purification of the produced cellulase enzyme and its characteristics were investigated.

REVIEW OF LITERATURE

1. Agricultural wastes

Nowadays, in Egypt due to its over population density, which lead to intensive cultivation of food crops by using horizontal and vertical expansion in order to maximize the return of the agricultural production. Egyptian land yielding crops two or three times a year, the major crops include wheat, maize, rice, cotton, clover, sugar cane, beans, and soybeans (El-Mashad *et al.*, 2003 and Said *et al.*, 2013). Thus, it has produced a huge amount of celluloses agricultural and horticultural wastes (Agro-wastes). The accumulation of such wastes annually without any treatment represents a bad environmental impact and a waste of an important economic resource (Hassan *et al.*, 2014).

Agro-wastes are the amount of crop that leftovers after the harvest of the main product. They are leaves, stem and shelves which are considered as rough plant by-products with big size and relatively poor in protein, fat and other nutrient compounds (Shaban *et al.*, 2010 and Said *et al.*, 2013). Globally, annually produced agro-wastes are almost five billion metric tons of biomass made from agriculture and agrobased food industries. These wastes include rice bran, rice straw, sugarcane bagasse, fruits and vegetable wastes, wheat bran, cotton leaf scraps, etc. Also almost 1.3 billion tonnes, represent approximately one third of the globally produced food, are lost or wasted every year. Although these wastes contain high nutrients, it can become breeding grounds for disease-causing microbes. Thus, it is very important to deal