

Extracting Landmine Characteristics Using Electromagnetic Techniques

A Thesis Submitted to Faculty of Science-Ain Shams University for The Degree of Master of Science (M.Sc.) in Physics

By

Mohamed Elsaid Abd ElAal Mohamed

B.Sc. in Physics (Electronics) Faculty of Science- Ain Shams University-2012

Supervised by

Prof. Dr. Ashraf Shamseldin Yahia

Professor of Electronics and Electromagnetics - Physics, Physics Dept., Faculty of Science, Ain Shams University

Mohamed Hussein Abd El-Razik

Lecturer of Physics, Physics Dept., Faculty of Science, Ain Shams University

Physics Department Faculty of Science Ain Shams University (2019)

APPROVAL SHEET

Extracting Landmine Characteristics Using Electromagnetic Techniques

By

Mohamed Elsaid Abd ElAal Mohamed

Supervisors:	Signature
Prof. Dr. Ashraf Shamseldin Yahia Professor of Electronics and Electromagnetics - Physics Department -Faculty of Science - Ain Shams University	
Dr. Mohamed Hussein Abd El-Razik lecture of Physics – Physics Department Faculty of Science - Ain Shams University	

2019

Ain Shams University

Extracting Landmine Characteristics Using Electromagnetic Techniques

Name: Mohamed Elsaid Abd ElAal Mohamed

Degree: M. Sc.

Department: Physics

Faculty: Science

University: Ain Shams

Graduation Date: 2012 - Ain Shams University

Registration Date: 3/4/2017

Grant Date: 2019

© 2019

Mohamed Elsaid Abd El-Aal Mohamed

Table of contents

Acknowledgement	I
Abstract	II
List of Figures	III
List of Tables	IV
List of Abbreviations	V
Chapter1: Introduction	1
1.1 General overview	2
1.2 Landmines humanitarian problem	2
1.3 The landmines properties and classification	7
1.3.1Calssification according to target	8
1.3.2 Classification according to design	11
1.3 Motivation and aim of this research	13
1.4 Thesis objectives	15
1.5 Literature Review	15
1.6 Thesis organization	17
Chapter2: Landmine Detection Techniques	20
2.1 Introduction	21
2.2 Demining processes types	21
2.2.1 Military demining	21
2.2.2 Humanitarian demining	22
2.3 Landmine detection	22
2.4 Landmine detection techniques	23
2.4.1 Acoustic detection	25
2.4.2 Biological Detection	26
2.4.3 Electromagnetic Detection	28
2.4.4 Mechanical Detection	29

Chapter 3: Physical Background for GPR Systems	31
3.1 Introduction	32
3.2 GPR EM wave propagation	33
3.2.1 EM wave Propagation Principles	33
3.2.2 Electromagnetic Properties of Materials	35
3.2.3 Reflection and Transmission EMW at dielectric interface	es
	39
Chapter 4: Antenna Theory and Parameters	44
4.1 Introduction	45
4.2 Antenna Parameters	.45
4.2.1 Radiation Pattern	45
4.2.2 Radiation power density	46
4.2.3 Radiation intensity	47
4.2.4 Beam width	.47
4.2.5 Directivity	48
4.2.6 Efficiency	49
4.2.7 Gain	50
4.2.8 Bandwidth	.51
4.2.9 Polarizations	51
4.2.10 Input impedance	56
4.2.11 Scattering Parameters	57
4.3 GPR antenna requirements and overview	58
4.4 Antenna modeling, simulation and optimization techniques	61
4.4.1 GPR and Antenna modeling techniques	.61
4.4.2 Particle Swarm Optimization Algorith	65
4.5 Antenna Parameter Enhancing Using Artificial Magnetic	
Conductor (AMC)	67

Chapter 5: Antenna Design, Simulation and Fabrication	70
5.1 Introduction	71
5.2 Design Procedure	73
5.2.1 Design and Analysis using FIT	73
5.2.2 Prototype Fabrication	76
5.2.3 Measurements Setup	79
5.3 Results and Discussion	80
5.3.1 Simulation Results	80
5.3.2 Measurement Results	90
Chapter 6 Extracting Object signatures using the proposed antenna	96
6.1 Introduction	97
6.2 Extracting EM Signature of object in Free Space	97
6.3 Extracting EM Signature of buried object in Sand	99
Chapter 7 Conclusions and Future work	106
References	.109

ACKNOWLEDGEMENT

Firstly, I give thanks to Allah to give me the knowledge and power to fulfill this research work. This thesis could not have been realized without the support of Allah and his mercies.

I would like to thank, **Prof. Dr. Ashraf Shamseldin Yahia**, for his supervising, valuable support and continuous encouragement. He gave me a lot of his precious time to guide me throughout the research work.

My honest thanks also go to **Prof. Dr. Nashwa Mohamed Shalaan**, for her constantly support and encouragement. I appreciate her role in finishing this work.

I am sincerely tankful to **Dr. Mohamed Hussein** for his helpful advising and insightful suggestion. His promising ideas helped me all the time during the research.

I would like to express my Thanks and gratitude to **Dr. Ayman Ragab** for his interest about the research point. His vision, helpful advice and experience was capable me to complete my work.

The fruitful discussion with our team work **Dr. Mostaf El Aasser**, **Dr. Nasr Gad** and my college **Rehab Hemdan** merit giving a lot thanks to them. They give me support and advices many times.

I would like to thanks **Dr. Hala Hosny** a lot and pray to her to be in the heaven. She gave us lessons in the kindness, peace and benevolence.

Finally, I would like to dedicate my work to my beloved father. I thank Allah to give me a present as my father because none of my achievements would have been possible without his help. I hope that Allah accept him in his heaven.

I would like to give a lot thanks to my mother, lovely fiancee, sister, brother and all my family for their love and support all the time.

ABSTRACT

More than 70 countries suffer from around 100 million landmines all over the world. There are two steps to get rid of the landmines; firstly detect and allocate the position of them then removal step. Ground Penetrating Radar (GPR) technique is considered a promising technique for landmine detection and wide range of detection applications. It can detect both metallic and non-metallic landmine. The GPR systems subjects to R&D in various challenges in order to enhance the efficiency of the whole system. Current research is performing on both hardware as well as software like antenna and algorithms respectively.

This thesis cover the hardware development representing in proposes Ultra Wideband (UWB) antenna design. The reported design has wideband, high gain and high directivity. The new configuration achieves unidirectional radiation characteristics maintaining the circular polarized (CP) radiation characteristics. The whole configuration is optimized using particle swarm optimization algorithm to achieve the optimal bandwidth, gain and axial ratio (AR). It satisfy some requirements that's render it good candidate for GPR systems. The proposed antenna is simulated using Finite Integration Technique (FIT) and fabricated using photolithograph technique. The performance of the antenna is analyzed in terms of S_{11} parameter, gain, directivity and axial ratio. The measured results are in a good agreement with the simulated. The proposed configuration offers -10 dB return loss bandwidth of 540 MHz over the frequency range (0.8- 1.34 GHz) with 50.5% operational bandwidth and 3dB AR bandwidth of 295 MHz for (0.97-1.265 GHz) with approximate percentage of 26.4%. Furthermore, the maximum gain over the CP-operated bandwidth close to 8.86 dB, at frequency 1.05 GHz, is obtained.

Finally, the proposed antenna design is utilized within virtual experiment to extract electromagnetic EM characteristic signatures of a buried object like landmine in sand box. It is anticipated that this antenna is suitable for GPR applications as well as for employment in landmine detection at depths reach to 60 cm.