

Epidemiology of fungal infections in neonates correlated with antifungal drug susceptibility testing A Thesis

Submitted in partial fulfillment of the requirement for

M.Sc. Degree in Microbiology

Presented by

Sara Hany Ahmed Mohamed B.Sc. (Microbiology - Chemistry, 2010)

Supervised by Prof. Dr. Yousseria M. Hassan Shetaia

Professor of Microbiology (Mycology) Microbiology Department, Faculty of Science, Ain Shams University

Prof. Dr. Al- Zahraa Ahmed Karaam Eldin

Professor of Mycology & Medical Mycology Microbiology Department, Faculty of Science, Ain Shams University

Prof. Dr. Iman Mohamed El-Kholy

Consultant of Microbiology
Ain Shams Specialized Hospital, Ain Shams University

Dr. Eman Mokhtar Mahmoud

Manger of Abu El-Azzayem Hospitals Laboratories

> Microbiology Department Faculty of Science Ain Shams University

> > (2019)

Approval Sheet

Name: Sara Hany Ahmed Mohamed

Title:Epidemiology of fungal infections in neonates correlated with antifungal drug susceptibility testing

This Thesis for M.Sc. Degree has been approved by the following:

Supervisors

1. Prof. Dr. Yousseria M. Hassan Shetaia

Professor of Microbiology (Mycology), Microbiology Department, Faculty of Science, Ain Shams University

2. Prof. Dr. Al- Zahraa Ahmed Karaam Eldin

Professor of Mycology & Medical Mycology, Microbiology Department, Faculty of Science, Ain Shams University

3. Prof. Dr. Iman Mohamed El-Kholy

Consultant of Microbiology, Ain Shams Specialized Hospital, Ain Shams University

4. Dr. Eman Mokhtar Mahmoud

Manger of Abu El-Azzayem Hospitals, Laboratories

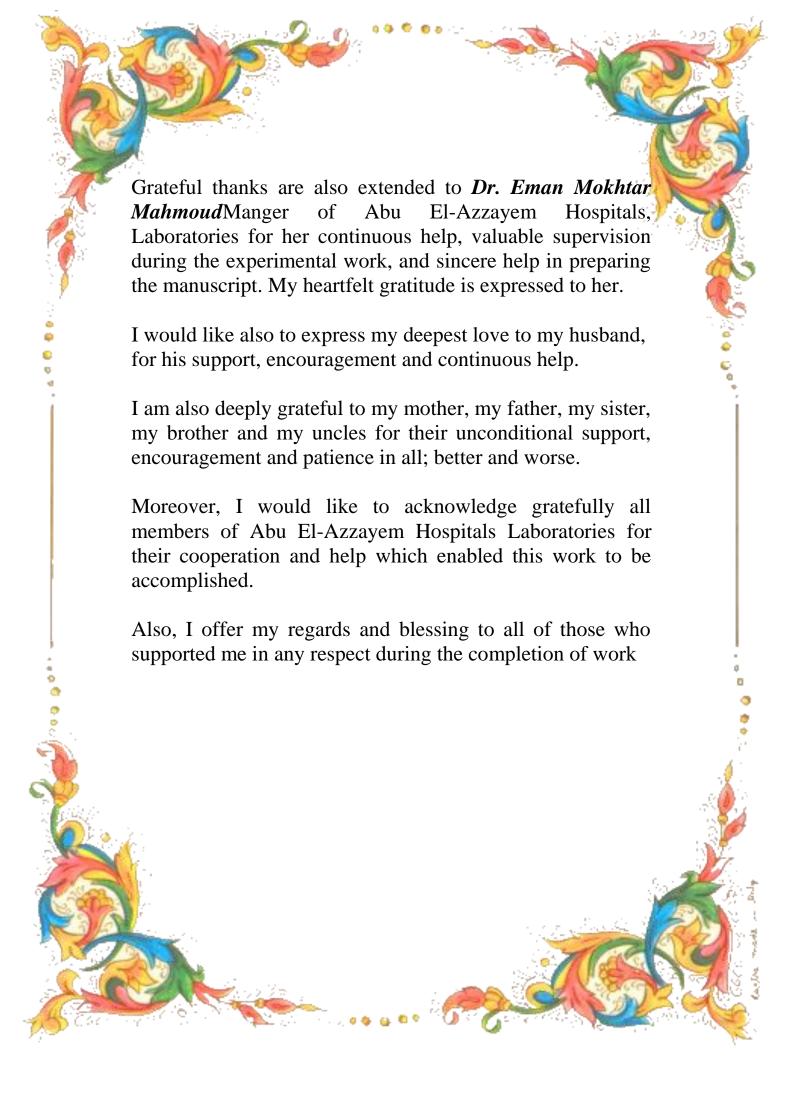
Advisory committee

Prof. Dr. Yousseria M. Hassan ShetaiaProfessor of Microbiology (Mycology), Microbiology Department, Faculty of Science, Ain Shams University

Prof. Dr. Iman Mohamed El-KholyConsultant of Microbiology, Ain Shams Specialized Hospitals, Ain Shams University

Date of Examination

Acknowledgment


First and forever, thanks to **ALLAH**, who gives me everything in my life, and I supplicate to Allah to make my life in a perfect way.

With the deepest gratitude, I wish to thank every person who has come in to my life and inspired, touched and illuminated me through their presence. I would also like to acknowledge and express my gratitude to the following people for their magnificent support and contributions to this manuscript.

For the soul of *Prof. Dr. Alzahraa Karam Eldin*, Prof. of Microbiology, Ain Shams University, who suggested the topic of this work and gave a lot of effort to accomplish it, a lot of support and kind help, continuous encouragement and valuable guidance

Grateful thanks to *Prof. Dr. Yousseria M. Hassan Shetaia*, Professor of Microbiology (Mycology), Microbiology Department, Faculty of Science, Ain Shams University for her continuous help, valuable supervision and reviewing this work

Wish to express my sincere gratitude to *Prof.Dr. Iman Mohamed El-Kholy*, consultant of microbiology at Ain shams university hospitals for her continuous help, constructive criticism, valuable supervision during the experimental work, continuous encouragement, valuable guidance as well as reviewing this work.

Contents

Introduction	1
Aim of the work	4
Review of literature	5
Epidemiology of Neonatal fungal infections	6
Opportunistic infection caused by Candida albicans	
Infections caused by non – albicans Candida	
Neonatal Fungal Infection	12
Risk factors of neonatal fungal infections	16
Low birth weight	17
Gestational age	18
Use of Catheters	18
Antibiotic treatment	19
Clinical Manifestations	20
Cutaneous candidiasis	20
Oral candidiasis	20
Respiratory infections	21
Bloodstream infection	22
Urinary tract infection (UTI) (Candiduria)	22
Meningitis	23
Other neonatal infections caused by fungi	23
Pathogenesis	24
Transmission	25
Colonization	26
Penetration of host body	27
Host defense against fungal infection.	27
Treatment	29
Prevention of neonatal infections	37
Material and Methods	38
Selection of subjects	38
Identification of pathogenic fungal isolates	40

Pre analytical preparations and sample collection.	40
Experimental Methods	41
Examination of buffy coat layer	41
Blood culture	41
Detection of fungal pathogens by BACTEC	42
Identification of pathogenic yeast fungi	43
Identification of yeast fungi using the routine laboratory method	43
Purification of cultures	43
Temperature tolerance	44
Cycloheximide sensitivity test	44
Morphology on corn- meal tween 80 agar	44
Germ tube test	44
Ascospore detection	45
Examination of non albicans Candida by spore stain	45
Chromagar culture	45
Biochemical tests (assimilation and fermentation using routine laboratory procedures)	46
KNO3 utilization test	46
Carbohydrate assimilation and Fermentation tests	47
Urease test	47
Identification of candida species using "candifast's" kit	47
Molecular identification of fungal isolates	49
Molecular identification of yeast isolates	49
Molecular identification of the mold isolates	51
Antifungal susceptibility test of yeasts using disc diffusion method	53
Assessment of minimal inhibitory concentration (MIC),	54
Determination of minimum fungicidal concentration (MFC) determination	55
Results	57
Discussion	83
Conclusion.	93
Recommendations	94
Summary	94
Reference	97

List of tables

Table, (1): Incidence of microbial infection (bacterial and fungal) among 176 enrolled
neonate58
Table, (2): Distribution of the studied samples according to the gender and age of
neonates59
Table, (3): Distribution of the study samples according to the body weight
Table, (4): Distribution of studied samples according to the onset of sepsis
Table, (5): Distribution of the studied clinical samples according to their types
Table, (6): Distribution of the studied clinical samples according to their medical history
Table, (7): Distribution of the studied samples according to mode of delivery645
Table, (8): Distribution of the causal agent among the positive clinical samples according to causal agent
Table, (9): Distribution of the studied fungal infections according to the gender 667
Table, (10): Distribution among No. of fungal isolates the studied fungal samples according to the onset of sepsis
Table, (11): Distribution of No. of fungal isolates according to the weight of neonates678
Table, (12): No. of fungal isolates collected in this study group
Table, (13): Distribution of fungal pathogens among the total fungal sepsis cases and total positive
cases
Table,(14): Antifungal resistance pattern among the fungal isolates71
Table, (15): Distribution of studied clinical samples according to Sensitivity Test (disc diffusion method) (N=26)
Table, (16): Description of fungal isolates according to their MIC (N=26)
Table, (17): statistical Distribution of fungal isolates according to their MIC (N=26) 767
Table (18): Description of fungal isolates according to their MFC (N=26)
Table. (19): statistical analysis of distribution of fungal isolates according to MFC (N=26)789

List of figures

Fig. (1):Risk factors in neonatal fungal infection16
Fig. (2): steps of pathogenesis of mold or yeast25
Fig. (3): Pie chart showing the distribution of the study samples58
Fig. (4): Pie chart gender distribution of the study group59
Fig. (5): Pie chart weight distribution of the study samples60
Fig. (6): Pie chart sepsis onset distribution of the study group61
Fig. (7): Bar chart showing distribution of clinical specimens of the study group62
Fig. (8): Bar chart showing medical history distribution of the study group64
Fig. (9): Bar chart showed the distribution of mode of delivery among the study samples
Fig. (10): bar chart for the distribution of fungal isolates69
Fig (11): assessment the susceptibility of fungal isolates to the antifungals71
Fig (12): Bar chart represent the susceptibility of fungal isolates to different antifungals
Fig. (13): Bar chart descriptive of studied sample by MIC (N=26)76
Fig (14): Phylogenetic tree of the pathogenic yeast isolates and closely related strains according to gene Bank data
Fig. (15): HNC15-25 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence of <i>Penicillium oxalicum</i>

List of abbreviations

AFG	Anidulafungin
AMB	Amphotericin B
BHI	Brain heart infusion
BMT	Blood and marrow transplant
BSI	Blood stream infection
BW	Birth weight
CAS	Caspofungin
CNS	\Central nervous system
DMSO	Dimethyl sulfoxide
ELBW	Extremly low birth weight
EOS	Early onset sepsis
FLC	Fluconazole
FUO	fever of unknown origin
ICUs	Intensive care units
IFIs	invasive fungal infections
ITC	Itraconazole
KTC	Ketoconazole
LOS	Late onset sepsis
MFC	Minimum fungicidal concentration
MFG	Micafungin
MIC	Minimum inhibitory concentration
NAC	Non albicans <i>Candida</i>
NICUs	Neonatal intensive care units
POS	Posaconasole
PRRS	porcine respiratory and reproductive syndrome
SDA	Sabaroud dextrose agar
TPN	Total parental nutrition
TRB	Terbinafine
UTI	Urinary tract infection
VLBW	Very low birth weight
VRC	Voriconazole
YCB	Yeast carbon base
YNB	Yeast nitrogen base

Abstract

Background: Invasive fungal diseases (IFDs) are opportunistic infections associated with significant mortality in paediatric patients, especially in those with compromised immune system and neonates with very low birth weight (VLBW). The objectives of this study are to determine the prevalence, clinical features and fungi isolates of neonatal sepsis in three hospitals in Egypt. Methodology: The study is a cross sectional survey of 176 neonates with clinical sepsis admitted to the neonatal intensive care units (NICU) of the three hospitals over a period of one year (February 2015 to January 2016). A minimum of two blood samples (collected within 24 hours) from each neonate were cultured for bacteria in automated BacT/AlerT and conventional culture bottles, while Saboraud-Brain Heart Infusion broth was inoculated for fungi culture. Positive growths from the broth were sub-cultured on Sabouraud Dextrose Agar (SDA) plates for aerobic incubation at 25oC and 37oC for 2 weeks. Identification of fungi colonies on SDA was by conventional morphology and confirmation on chromogenic agar media. Phylogenetic analysis of representative fungi isolates was done by partial nucleotide sequencing of D1-D2 domain of the large subunit rRNA gene. Results: Of the 176 neonates, blood culture was positive for pathogens in 55 (31.3 %) samples and fungi were isolated in 26 (14.8 %); yeast (25) and mould (1). The commonly isolated yeasts were Candida albicans, Candida tropicalis, and Candida krusei representing 34.6%, 30.8% and 23.1%, respectively of the total fungi isolated. The phylogenetic analysis in comparison to Genbank data showed defined clades for Candida tropicalis, Candida parapsilosis, Candida albicans and Pichia kudriavzevii Conclusion: This current study highlights the changing pattern of neonatal infections in Egypt caused by Candida, with increasing incidence of infections caused by non-albicans Candida species .

Key words: fungal infection, neonatal, risk factors, PCR, yeast

Introduction

Opportunistic infections are an increasing common problem in neonatal intensive care units (NICUs), (Latha *et al.*, 2017) More than 40% of under-five deaths globally occur in the neonatal period, resulting in 3.1 million newborn deaths each year (UNICEF,2011). Almost 1 million of these deaths are attributed to infectious causes, Including neonatal sepsis, meningitis, and pneumonia (Black *et al.*, 2010).

Fungal infections in children appear to have increased over the past few decades, primarily because there has been an increase in children with primary or secondary immune deficiencies. Premature neonates are at high risk for opportunistic infections. The risk for invasive fungal infections is high in very low birth weight (VLBW) infants (<1500 g) and highest infection were recorded for infants born at the youngest gestational ages (Mokhtar *et al.*, 2005).

Fungal infections are an important cause of mortality and morbidity. Although these infections have been well characterized in adults, the incidence and analysis of risk factors, diagnostic tools, treatments and outcomes have not been well described for large cohorts of pediatric or neonatal patients in the neonatal period, especially in preterm infants (Steinbach, 2010).

Candida species are one of the most common causes of blood stream infections among neonates (Shrivastava *et al.*, 2015). Significance of *Candida* species, in neonatal intensive care units (NICU) is increasingly being recognized. It is the third most common cause of late onset sepsis in NICU patients and accounts for 9-13% of blood stream infections (BSI) in neonates (Juyal *et al.*, 2013).

Although *Candida albicans* has historically been the most frequently isolated species, non-albicans Candida (NAC) has been emerged as important opportunistic pathogen, notably *Candida tropicalis*, *C. parapsilosis*, *C. krusei*, and *C. glabrata* (Goel *et al.*, 2009, Oberoi *et al.*, 2012).

There is growing evidence suggesting a role of increasing use of azole agents in this epidemiological shift. Several of these NAC species exhibit intrinsic resistance to traditional triazoles like fluconazole (FLC) and may also demonstrate cross resistance to newer triazoles. This makes it imperative to perform both speciation and antifungal susceptibility (AFG) of all the yeast isolates from blood or any other specimens (Juyal *et al.*, 2013).

Candida infections are a common cause of late-onset sepsis in the NICU and are associated with significant mortality and neurodevelopmental impairment. One of the most important reasons in managing candidal infection in NICU is the use of prophylactic fluconazole in very low birth-weight infants to prevent invasive candidiasis (Benjamin *et al.*, 2014).

The introduction of antifungal agents caused a shift from complete dominance of *Candida albicans* to non-albican species, which now constitute more than half of all cases of candidemia. Recognition of this change is clinically important, since the various species differ in susceptibility in the newer antifungal agents (Shrivastava *et al.*, 2015).

Aim of the work

The objectives of this study were as the following:

- 1. Determination the incidence and etiology of fungal infection among the neonates in the intensive care units in some hospitals.
- 2. Isolating the causative agent from different sites of infection in neonates and identification of these fungal isolates.
- 3. Evaluation the efficacy of antifungal drugs against the isolated fungal pathogens.