سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

THE INFLUENCE OF SOME CALCIUM CHANNEL BLOCKERS ON SOME ASPECTS OF LORAZEPAM ADDICTION.

A Thesis submitted

by

Chab S. F. Saad

For The Degree Of

M. SC. Pharm. { Pharmacology }

Under The Supervision Of

Khayyal, M. T.

Saad, S. F.

Prof. of Pharmacology, Faculty of Pharmacy, Cairo University. Prof. & Head of Pharmacology Dept.
Faculty of Pharmacy,
Cairo University.

Altia, A. S.

Assistant Prof. Of Pharmacology, Faculty of Pharmacy, Cairo University.

B

 $\Omega \mathbb{J}$

1995

5 V/3/

APPROVAL SHEET.

APPROVED

Committee in charge

1. Dr. Amina Salem Attia Amina Salem

2-

Prof Dr. Sanaa Abdel Baky Kenawy Sanaa Allena

Prof. Dr. Zarif Isaac Gergis 3Zarif Iraak

Date: / / 1995

ACKNOWLEDGMENT

I wish to express my sincere gratitude to Dr. M.T.Khayyal, Professor of Pharmacology, Faculty of Pharmacy, Cairo University, for his helpful supervision and valuable comments.

I wish also to express my deepest appreciation to my parents: Dr. Samir F. Saad, Professor and Head of Pharmacology Department, Faculty of Pharmacy, Cairo University, and Dr. Taghreed T. Fam, for their continuous encouragement.

I am also indebted to Dr. Amina S. Attia, Assistant Professor of Pharmacology, Faculty of Pharmacy, Cairo University, for her continuous help and supervision during all stages of the work.

My thanks are also to Dr. Mona Mahrous, Lecturer in Pharmacology Department, Faculty of Pharmacy, Cairo University for helping in the ANOVA calculations.

I would also like to thank all the staff members, demonstrators and workers in Pharmacology Department, Faculty of Pharmacy, Cairo University, for the help and assistance they offered me.

N.B.

Beside the work presented in this thesis, the candidate has attended prerequisite post-graduate courses for one year which included the following topics:

- 1- Instrumental analysis
- 2- Mathematics
- 3- Physical chemistry
- 4- Statistics.
- 5- Special course in pharmacology

He had successfully passed an examination in these topics.

Prof. Dr. SAMIR F. SAAD

Head of Pharmacology Department

Soud, SE

Faculty of Pharmacy

Cairo, University.

Contents

	Page
	÷
Contents	i
List of Abbreviations	iii
List of Tables	iv
List of Figures	v
1. Introduction	1
1.1. Drug dependence	1
1.2. Benzodiazepine receptors and the role of GABA.	. 4
1.3 Drugs acting on the Benzodiazepine receptors	6
1.3.1. Lorazepam	8
13.2. Flumazenil	11
1.4. Calcium channels	12
1.5. Calcium channel blockers.	17
1.5.1. Calcium channel Blockers and drug dependence	17
1.5.2 Isradipine	19
1.5.3. Diltiazem	20
1.5.4. Flunarizine	21
1.6. Nouvetransimitters	22

· ·	age
1.6.1 Norepinephrine (NE)	23
1.6.2 Dopamine (D)	25
1.6.3. Serotonin (5-HT)	28
Aim of work	31
2. Material and Methods	32
2.1. Animals	32
2.2. Drugs and chemicals	32
2.3. Experimental Design	33
2.4. Determination of NE, D and 5-HT contents	36
2.5. Standard curves	38
2.6. Statistical analysis	38
3- Results	42
3.1. Effect of LZ withdrawal on NE, D and 5-HT contents	42
3.2. Effect of calcium channel blockers	42
3.2.1. Isradipine	42
3.2.2 Diltiazem	48
3.2.3 Flunarizine	48
4- Discussion	71
5- Summary	82
6- References	85
7- Arabic Summary	

List of Abbreviations.

BZ: Benzodiazepine

BZs: Benzodiazepines

Ca++Ch. Bl.:

Calcium channel blockers

C.C: Cerebral cortex

CNS: Central Nervous System

CSF: Cerebro-spinal fluid

D: Dopamine

DHP: Dihydropyridine

Dilt: Diltiazem

Flumz: Flumazenil

Flun: Flunarizine

GABA: γ-aminobutyric acid.

GIT: Gastro-intestinal tract

h: Hour

5-HT: 5-hydroxytryptamine (Serotonin)

I.P. Intraperitoneal

Isr.: Isradipine

LZ: Lorazepam

M.B: Mid-brain

M.,P. & CB: Medulla, pons and cerebellum

NE: Norepinephrine

Th.H TH: Thalamus and hypothalamus

· VDCC.: Voltage-dependent calcium channel

VGCC: Voltage-gating calcium channel

List of Tables

Table		Page	
1-	Effect of Isr- on NE contents in different brain regions of mice	43	
2-	Effect of Isr. on D contents in different brain regions of mice	44	
3-	Effect of Isr. on 5-HT contents in different brain regions of mice	45	
4-	Effect of Isr. on the withdrawal of LZ from dependent mice	46	
5-	Effect of Dilt. on NE contents in different brain regions of mice	49	
6-	Effect of Dilt. on D contents in different brain regions of mice	50	
7-	Effect of Dilt. on 5-HT contents in different brain regions of mice	51	
8-	Effect of Dilt. on the withdrawal of LZ from dependent mice.	52	
9-	Effect of Flun. or NE contents in different brain regions of mice	54	
10-	Effect of Flun. on D contents in different brain regions of mice	55	
11-	Effect of Flun. or 5-HT contents in different brain regions of mice	56	
12-	Effect of Flun. on the withdrawal of LZ from dependent mice	57	

List of Figures

Fig		Page
1-	Illustration of possible coupling among GABA receptors,	
	chloride channels and Benzodiazepine receptors	5
2-	Biotransformation of Benzodiazepines	8
3-	Arrangement of the subunits of the L class of the VGCC	14
4-	Proposed arrangement of the α_1 subunit of the voltage	
	gated L-type of Ca++ channel	14
5-	Standard curve for NE	39
6-	Standard curve for D	40
7-	Standard curve for 5-HT	41
8-	Percentage deviation of NE contents in C.C. from the	
	correrponding control under several treatments	59
9-	Percentage deviation of NE contents in Th.HTh. from the	
	correrponding control under several treatments	60
10-	Percentage deviation of NE contents in M.B. from the	
	correrponding control under several treatments	61
11-	Percentage deviation of NE contents in M., P. & CB.	
	from the corresponding control under several treatments	62
12-	Percentage deviation of D. contents in C.C. from the	

	corresponding control under several treatments	03
13-	Percentage deviation of D. contents in Th.HTh. from the	
	correrponding control under several treatments	64
14-	Percentage deviation of D contents in M.B. from the	
	correrponding control under several treatments	65
15-	Percentage deviation of D. contents in M., P. & C.B.	
	from the corresponding control under several treatments	66
16-	Percentage deviation of 5-HT contents in C.C. from the	
	correrponding control under several treatments	67
17-	Percentage deviation of 5-HT contents in Th.HTh. from the	
	correrponding control under several treatments	68
18-	Percentage deviation of 5-HT contents in M.B. from the	
	correrponding control under several treatments	69
19-	Percentage deviation of 5-HT contents in M., P. & CB.	
	from the corresponding control under several treatments	70