سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

INFLUENCE OF THE MICROSTRUCTURE AND THE GRAIN BOUNDARY PRECIPITATES ON THE BEHAVIOUR OF PH-AUSTENITIC STAINLESS STEEL IN COMPARISON WITH Ni-BASE SUPERALLOY DURING HIGH TEMPERATURE CREEP

by
Amer Eid Ali Amer
B.Sc, M.Sc, Mech.Eng.,

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

in

MECHANIC DESIGN AND PRODUCTION ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT June 2004

BIEIVA

.

INFLUENCE OF THE MICROSTRUCTURE AND THE GRAIN BOUNDARY PRECIPITATES ON THE BEHAVIOUR OF PH-AUSTENITIC STAINLESS STEEL IN COMPARISON WITH Ni-BASE SUPERALLOY DURING HIGH TEMPERATURE CREEP

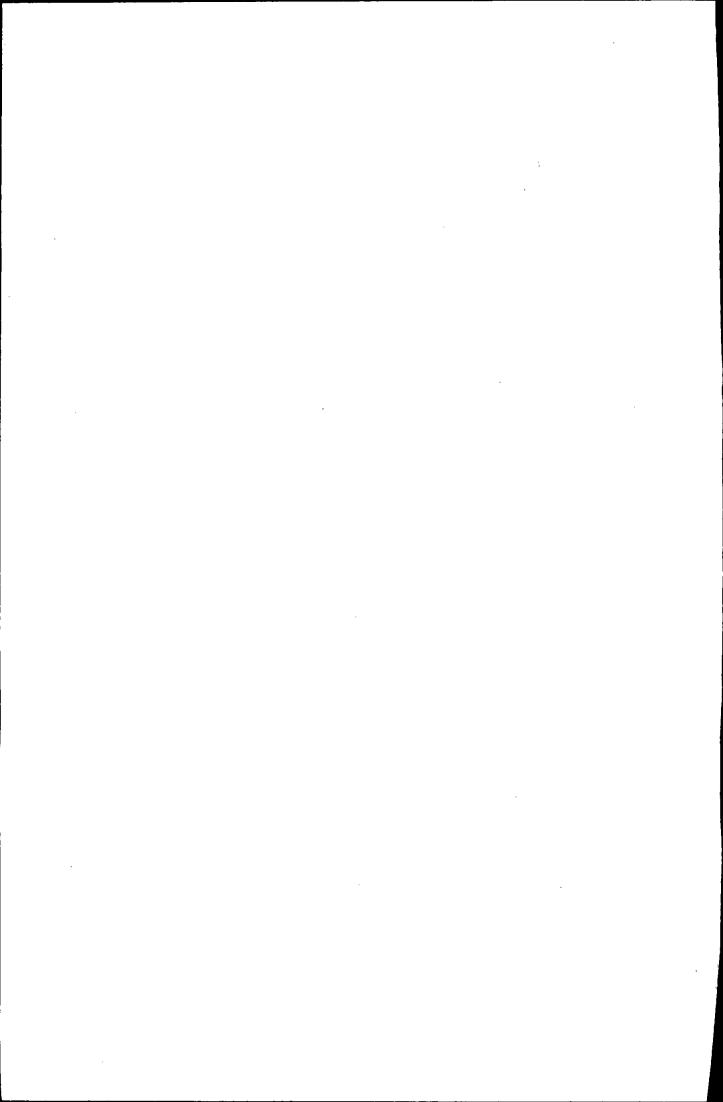
By

Amer Eid Ali Amer B.Sc, M.Sc, Mech.Eng.,

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING


Under the Supervision of

Prof. Dr. Y.S.SHASH

Prof. Dr. in Mechanical Design and Production Engineering Dept. Faculty of Engineering Cairo - University Prof. Dr. S.A.EL GHAZALY

Prof. Dr. in Steel Technology Dept. Central Metallurgical Research and Devlopment Institute CMRDI Helwan - Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT June 2004

INFLUENCE OF THE MICROSTRUCTURE AND THE GRAIN BOUNDARY PRECIPITATES ON THE BEHAVIOUR OF PH-AUSTENITIC STAINLESS STEEL IN COMPARISON WITH Ni-BASE SUPERALLOY DURING HIGH TEMPERATURE CREEP

by **Amer Eid Ali Amer**B.Sc, M.Sc, Mech.Eng.,

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

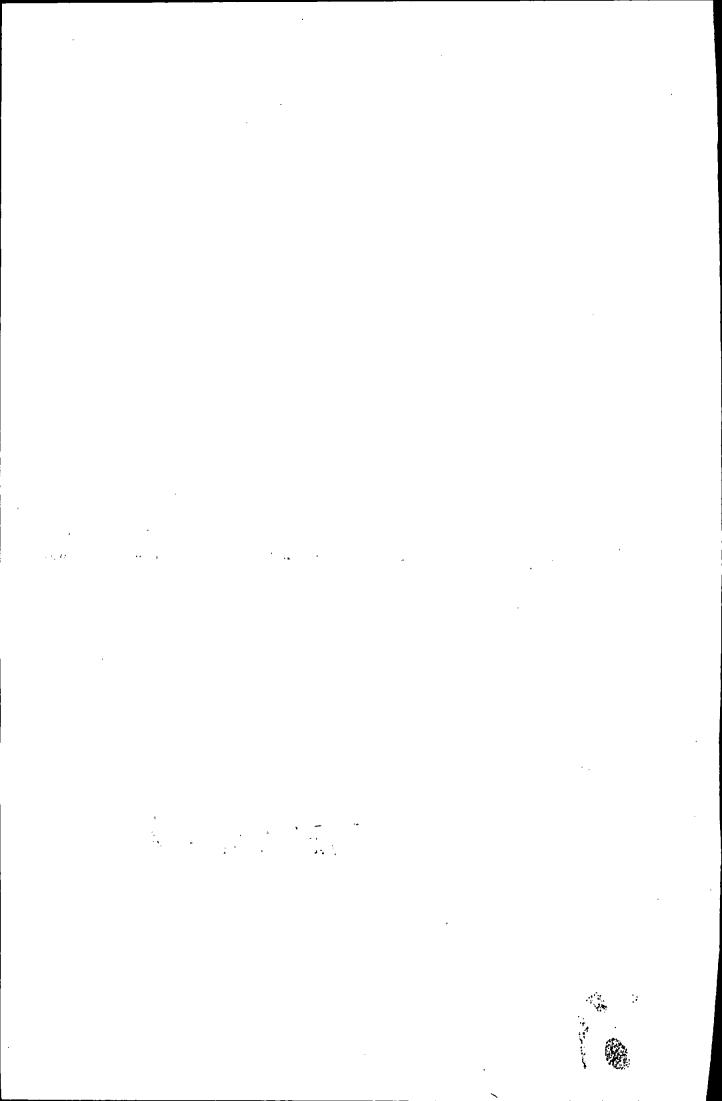
in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Approved by the Examining Committee

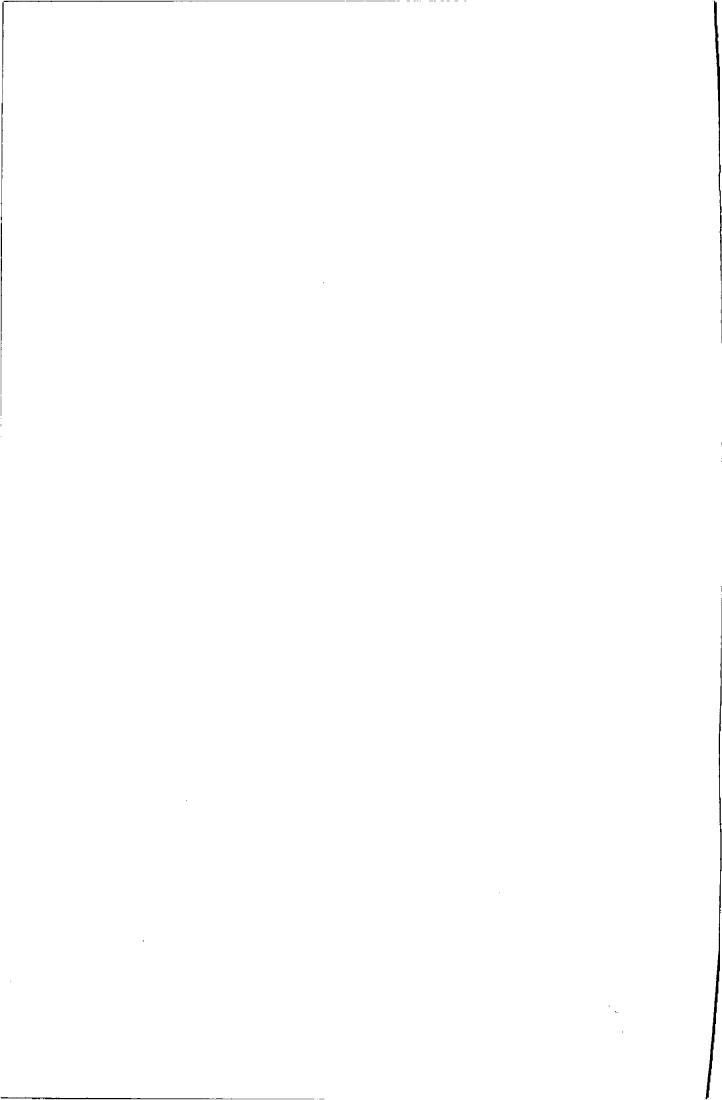
Prof.Dr.; Y.S.SHASH, Thesis Main Advisor

Prof. Dr.; S.A. El Ghazaly, Thesis Advisor


Prof. Dr.: S.M.Riad , Member

Samir M. Riad

Prof.Dr.; T.A.El Bitar, Member


Taker El-Bek

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
June 2004

CONTENT S

•	Page
LIST OF TABLES	V
LIST OF FIGURES	VI
LIST OF SYMBOLS AND ABREVIATIONS	
DEDICATIONS	XIII
ACKNOWLEDGMENTS	XIV
ABSTRACT	XV
1. INTRODUCTION	1
2. LITERATURE SURVEY	. 3
2.1 High Temperature Creep	3
2.2 Strengthening mechanisms of Superalloys	9
2.2.1 Solid solution hardening	11
2.2.2 Precipitation hardening	11
2.2.3 Dispersion hardening	15.
2.2.4 Influence of grain size and grain boundaries	16
2.2.5 Cold deformation as a factor affecting the	19
mechanical properties	
2.2.6 strengthening by dislocation	21
2.3 Influence of stacking fault energy on the mechanical behavior	. 22
2.4 Basic sources of creep strength in metallic alloys	23
2.5 Grain boundary sliding in metals	25
2.5.1 Metallographic observations about the grain	25
boundary sliding phenomenon	
2.5.2 Theories of macroscopic sliding	27
2.6 Effect of substructure on creep	27
2.7 Precipitation in Creep resistant austinitic stainless steels	30
2.7.1 Carbides and Nitrides –MX precipitates	30
2.7.2 Z-Phase	33
2.7.3 M ₂₃ C ₆ Carbide	34
2.7.4 M ₆ C Carbide	. 38
2.7.5 Intermetallic Phases	39

2.7.5.1 σ-Phase	39
2.7.5.2 Laves Phase	42
2.7.5.3 χ- Phase	43
2.7.5.4 G-Phase	43
2.7.5.5 $\sqrt{\ }$, Ni ₃ Ti and related precipitates	45
3. EXPERIMENTAL PROCEDURES	
3.1 Materials	47
3.2 Heat treatments	47
3.3 Creep Experiments & Testing equipment	48
3.4 Microstructures investigation equipments	52
3.4.1 Light Microscopy	52
3.4.2 Transmission Electron Microscopy	52
TEM	
3.4.3 Scanning Electron Microscopy SEM	53
with EDX analysis	
4. RESULTS AND DISCUSSIONS	
4.1 Microstructure investigation	54
4.1.1 Microstructures of investigated	54
Material PH- austenitic steel (A-286)	
4.1.2 Microstructure investigation of the PH-	60
Nickel base superalloy Nimonic-263	
4.2 Emphasizing of Grain boundaries, Subgrains,	63
and Dislocation by TEM	
4.2.1 Microstructural investigation for PH austenitic	63
stainless steel (A-286) before creep	
test	
4.2.2 Microstructural investigation for PH austenitic	66
stainless steel (A-286) after creep test	
4.2.3 Microstructural investigation for	78
Nickel-base superalloy (Nimonic-263)	
before creep test	
4.2.4 Microstructural investigation for	83
Nickel-base superalloy (Nimonic-263)	

after creep test

4.3 Creep Curves	86
4.3.1 PH austenitic stainless steel	86
4.3.2 Influence of increasing test	87
temperature on the different regimes	
of creep curves	
4.3.3 Nickel-Base superalloy	87
4.4 Fracture analysis of tested alloys	91
4.4.1 Fractography of PH austenitic stainless steel	91
4.4.2 Fractography of PH austenitic stainless steel	91
subjected to Laser Beam (LBS)	
4.4.3 Influence of increasing test	99
temperature on fractography	
4.4.3a Fe – PH austenitic stainless steel	99
4.4.3b Fractography of PH austenitic stainless stee	el 99
subjected to Laser Beam (LBS)	
4.4.4 Fractography of Nickel-base	102
superalloy	
CONCLUSIONS	107
REFERENCES	109
-APPENDIX	116