

BIOSYNTHESIS OF METALLIC NANOPARTICLES USING FUNGI AND ITS APPLICATIONS

$\mathbf{B}\mathbf{v}$

Shrouk Salah El-deen Farah Mahmmoud

B.S.c in Microbiology/ Chemistry (2010)

Submitted in partial fulfillment of the requirement for the Degree

of Master of Science in Microbiology

Supervisors

Prof. Dr. Yousseria M. Hassan Shetaia

Professor of Microbiology (Mycology),

Faculty of Science, Ain Shams University

Prof. Dr. Refaat Ahmed El-Adly

Professor of Petroleum Chemistry,

Egyptian Petroleum Research Institute (EPRI)

Prof. Dr. Eman M. Ahmed El-Taher

Professor of Microbiology,

The Regional Center for Mycology and Biotechnology (RCMB),

Al-Azhar University

Faculty of Science, Ain Shams University

Dedication

I would like to dedicate this thesis to **the memory of my Father**, my mother, sister, brother, husband and my daughter. To everyone encouraged, supported me.

All my love& appreciate for them, my Family.

Acknowledgement

First and foremost, many thanks for **God**, the kindest and beneficent.

I wish to express my great appreciation and thanks to **Prof. Dr.Yousseria M. Hassan Shetia** Prof. of Microbiology (Mycology), Faculty of Science, Ain-Shams University, for her continuous super-vision, unfailing guidance throughout the whole work, valuable advice and direction of this study.

My deep thanks to **Prof. Dr. Eman M. Ahmed El-Taher** Prof. of Microbiology, The Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, for her continuous super-vision and guidance especially during practical work, also, for her motherhood attitude, help and support.

I would like to extend my thanks to **Prof. Dr. Reffat A. El-Adly** Prof. of Petroleum Chemistry, Egyptian Petroleum research institute (EPRI), Prof. of Chemistry, Faculty of Science, Taif University, Saudi Arabia, for his patience, support and valuablehelp.

Also, I would like to thank **Prof. Dr. Doaa S. El-Desouki** Prof. at Process Development Department, Egyptian Petroleum Research Institute (EPRI), for her valuable support and help especially during publication of research paper.

I am also very thankful to staff members of The Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, staff members of Microbiology Department, Faculty of Science, Ain- Shams University and my colleagues in Egyptian Petroleum Research Institute (EPRI) for their kind help and encouragement.

Finally, my great thanks to my father, mother, sister, brother, husband, my daughter and all members in my family who had really supported me and suffered a lot during this study.

Tableof	Contents	Page
Introdu	ction	1
AimofV	Vork	4
Literatı	ıreReview	5
What	isthenanotechnology	5
Metal	lic nanoparticles	6
Synth	esisofnanoparticles	6
A.	The state of starting material (solid, liquid&gas)	7
B.	Building wayofnanoparticles	7
Biosy	nthesis ofmetallicnanoparticles	8
	anisms of biosynthesis of nanoparticles microorganisms	0
C	Biosynthesis of nanoparticlesusingplants	
	•	
	Biosynthesis of nanoparticles using algae	
	Biosynthesis of nanoparticles using bacterialisolates	
	Biosynthesis of nanoparticlesusing actinomycetes	
	Biosynthesis of nanoparticles using yeastisolates	
F.	Biosynthesis of nanoparticles using moldisolates	16
	1. Intracellular synthesis of nanoparticles using mold isolates	17
	2. Extracellular synthesis of nanoparticles using mold	
	isolates	18
Physic	cal and chemical properties ofmetallicnanoparticles	20
Chara	cterizationofnanoparticles	21
A.	UV-visiblespectroscopy	21
B.	Transmission electronmicroscopy(TEM)	23
	Dynamic light scattering (DLS) Using Zeta potential technique	25
	X-Raydiffraction(XRD)	
D.	A-Nayummacuom(AND)	∠0

Assess	sment the biosynthesis of nanoparticles	
under	different physical andnutritionalfactors	28
Statisti	icalanalysis	30
Applic	ationsofnanoparticles	31
A. A	Antimicrobial activityofnanoparticles	32
В. 1	Nanoparticlesasnanoadditives	34
,	Tribology, Friction, Wear, Lubrication	35
C. 1	Biodegradation and photocatalytic activityof	
1	nanoparticles	37
Materia	ls&Methods	39
1. Ma	nterials	39
2. Me	ethods	42
Isolatio	on and identification offungalisolates	42
Biosyn	nthesis of metallic nanoparticles	
using l	ocal identifiedfungalisolates	42
Charac	cterizationofnanoparticles	43
A. 1	UV-visiblespectroscopyanalysis	43
В. Т	Transmission electronmicroscopy(TEM)	44
Assess	sment the biosynthesis of nanoparticles	
under	different physical andnutritionalfactors	45
	Effect of agitation/ static conditions on biosynthesis of nanoparticles	45
2.]	Effect of incubation temperature onNPsbiosynthesis	45
	Effect the changing of metal salts' concentrations (Substraction) on NPs biosynthesis	
4.]	Effect of fungal mycelium weight (Sizeofinoculum)	46
5. l	EffectofpH	46
6. l	Effect of different sugars(carbonsource)	47

7.	Effect the changing of nitrogen source concentration (NaNO3) onNPsbiosynthesis47	7
8.	The effect ofmediumused47	7
Statis	ticalanalysis47	7
Furth	er characterization ofmetallicnanoparticles48	3
A.	Dynamic LightScattering(DLS))
B.	X-ray diffractionstudies(XRD))
Appli	cationsofnanoparticles49)
A.	Antimicrobial activityofnanoparticles)
	Determination of minimal inhibitory concentration (MIC)50	
B.	Wear behavior of lubricating grease with NPs as additives 51	
	Scanning electron microscope (SEM)-Energy dispersive X-ray(EDX)	3
C.	Photodegradation of p-nitrophenol (PNP) using nanoparticles	
	53	
Experi	nentalResults55	•
	ion and identification offungalisolates55	
Isolat Biosy	ion and identification offungalisolates55 rnthesis of metallic nanoparticles using local identified fungal	5
Isolat Biosy isolat	ion and identification offungalisolates55 rnthesis of metallic nanoparticles using local identified fungal es63	3
Isolat Biosy isolat Chara	ion and identification offungalisolates	5
Isolat Biosy isolat Chara	ion and identification offungalisolates	5
Isolat Biosy isolat Chara	ion and identification offungalisolates	5 6 6
Isolat Biosy isolat Chara	ion and identification offungalisolates	5 6 6 7
Isolat Biosy isolat Chara	ion and identification offungalisolates	5 6 6 7
Isolat Biosy isolat Chara	ion and identification offungalisolates	5 3 5 7 3
Isolat Biosy isolat Chara	ion and identification offungalisolates	5 8 5 7 8
Isolat Biosy isolat Chara	ion and identification offungalisolates	5 8 5 7 8
Isolat Biosy isolat Chara A.	ion and identification offungalisolates	5 8 5 7 8 9
Isolat Biosy isolat Chara A.	ion and identification offungalisolates	5 3 5 7 3 1 2

	3. Aluminumnanoparticles(AlNPs)	75
	4. Zincnanoparticles(Zn-NPs)	76
	5. Chromiumnanoparticles(Cr-NPs)	77
	6. Ironnanoparticles(FeNPs)	78
	essment the biosynthesis of nanoparticles under Different ical andNutritional factors	79
1.	Effect of agitation/ static conditions on biosynthesis of nanoparticles	79
2.	Effect of incubation temperature onNPsbiosynthesis	81
3.	Effect the changing of metal salts' concentrations (Substraconcentration) onNPsbiosynthesis	
4.	Effect of fungal mycelium weight (Sizeofinoculum)	85
5.	EffectofpH	87
6.	Effect of different sugars(carbonsource)	89
7.	Effect the changing of nitrogen source concentration (NaNO3) onNPsbiosynthesis	91
8.	The effect ofmediumused	93
Furth	ner characterizationofnanoparticles	95
A.	Dynamic light scattering (DLS) using Zeta potential technique	95
	1. Silvernanoparticles(AgNPs)	96
	2. Coppernanoparticles(Cu-NPs)	97
	3. Aluminumnanoparticles(AlNPs)	98
B.	XRDofnanoparticles	99
	1. XRD ofAgNPs	99
	2. XRDofCu-NPs	101
	3 VPDofAINPs	102

Appl	ications of mycosynthesized nanoparticles103
A.	Antimicrobial activity of mycosynthesized nanoparticles 103
B.	1. Silvernanoparticles(AgNPs)104
	2. Coppernanoparticles(Cu-NPs)105
	3. Aluminumnanoparticles(AlNPs)105
C.	Wear behavior of lubricating grease with NPs asadditives
canning e	lectron microscope (SEM)-Energy dispersive X- ray(EDX) 107
D.	Photodegradation of p-nitrophenol (PNP) using nanoparticles
Discuss	sion118
Conclu	sion132
Summa	ary133
Refere	nces136
Arabic	Summary

List of Tables

Table no.	Title	Page	
1	Chemical composition of pin and Disc used in tribological experiment.	41	
2	Biosynthesis of different mycosynthesized nanoparticles using different fungal isolatesin dark and in the presence of sun light.	65	
3	TEM of the myco-synthesized nanoparticles with magnification (100X).	72	
4	Assessment the effect agitation/static conditions on biosynthesis of nanoparticles using fungalisolates.	79	
5	Effect of different temperatures on nanoparticles biosynthesis using fungalisolates.	81	
6	Effect the changing of metal salts' concentrations on NPs biosynthesis using fungal isolates.	83	
7	Effect of changing of fungal mycelial weight on NPs biosynthesis.	85	
8	Effect of different pH values (4.0, 5.0, 6.0, 7.0, 8.0 and 9.0) on NPs biosynthesis.		
9	Effect of different sugars (C-source) on NPs biosynthesis.	89	
10	Effect of changing nitrogen source concentration on NPs biosynthesis.	91	
11	Effect of different types of media on NPs biosynthesis.	nedia on NPs 93	
12	DLS of myco-synthesized nanoparticles using Zeta Potential.		
13	Assessment of the antimicrobial activity and MIC of the mycosynthesized NPs against the tested bacterial and fungal strains.		
14	Assessment of the pin weight before and after thewear test.		
15	EDX elemental analysis of the worn surface of steel pin.	108	
16	The photodegradation (%) of PNP in case of using Ag-Cu/Al photocatalyst.	115	
17	The photodegradation (%) of PNP in case of using Cu/Al photocatalyst.	115	

List of Figures

Figure	Title	Page
no.		
1	Schematic figure for biosynthesis of nanoparticles using microorganisms.	10
2	Schematic figure of the pin on disc wear test system.	51
3	UV-vis spectra of colloidal biosynthesized silver nanoparticles using <i>Alternaria alternata</i> with 10mM of AgNO ₃ solution, under sunlight. Control is the fungal filterate without AgNO ₃ .	66
4	UV-vis spectra of colloidal biosynthesized copper oxide nanoparticles using <i>Penicillium duclauxii</i> with 10mM of CuSO ₄ solution, under sunlight. Control is the fungal filterate without CuSO ₄ .	67
5	UV-vis spectra of colloidal biosynthesized aluminum oxide nanoparticles using <i>Aspergillus niger</i> with 10mM of Al ₂ (SO ₄) ₃ solution, under sunlight. Control is the fungal filterate without Al ₂ (SO ₄) ₃ .	68
6	UV-vis spectra of colloidal biosynthesized zinc nanoparticles using <i>Alternaria alternata</i> with 10mM of ZnSO ₄ solution, under sunlight. Controlis the fungal filterate without ZnSO ₄ .	69
7	UV-vis spectra of colloidal biosynthesized chromium oxide nanoparticles synthesized using <i>Penicillium duclauxii</i> with 10mM of CrCl ₂ solution, under sunlight. Control is the fungal filterate without CrCl ₂ .	70
8	UV-vis spectra of colloidal biosynthesized iron nanoparticles synthesized using <i>Paecilomyces variotii</i> with 10mM of FeSO ₄ solution, under sunlight. Control is the fungal filterate without FeSO ₄ .	71
9	TEM micrograph recorded for silver nanoparticles (AgNPs) with magnification (100X).	73
10	TEM micrograph recorded for Copper nanoparticles (Cu-NPs) with magnification (100X).	74
11	TEM micrograph recorded for Aluminum nanoparticles (AlNPs) with magnification (100X).	75

12	TEM micrograph recorded for Zinc nanoparticles (Zn-NPs) with magnification (100X).	
13	TEM micrograph recorded for Chromium Nanoparticles (Cr-NPs) with magnification (100X).	
14	TEM micrograph recorded for Iron nanoparticles (FeNPs) with magnification (100X).	
15	Effect of agitation/ static conditions on the biosynthesis of nanoparticles using Alternaria alternata, Penicillium duclauxii and Aspergillus niger.	
16	Effect of different incubation temperatures on the biosynthesis of nanoparticles using <i>Alternaria</i> alternata, <i>Penicillium duclauxii</i> and <i>Aspergillus</i> niger.	82
17	Effect of of metal salts' concentrations on the NPs biosynthesis.	84
18	Effect of changing of fungal mycelial weight (size of inoculum) onNPs biosynthesis.	86
19	Effect of different pH values (4.0, 5.0, 6.0, 7.0, 8.0 and 9.0) on NPs biosynthesis using Alternaria alternata, Penicillium duclauxii and Aspergillus niger.	88
20	Effect of different sugars (C-source) on NPs biosynthesis.	90
21	Effect of changing of NaNO ₃ concentration on NPsbiosynthesis.	
22	Effect of different types of media on NPs biosynthesis using Alternaria alternata, Penicillium duclauxii and Aspergillus niger.	94

23	(A)DLS of fresh biosynthesized silver	96	
	nanoparticles. (B) DLS of biosynthesized silver		
	nanoparticles "after 2months of biosynthesis" using		
	Zeta potential.		
	_		
24	(A)DLS of fresh biosynthesized copper nanoparticles	97	
	(B) DLS of biosynthesized copper nanoparticles "after 2months of biosynthesis" using Zeta potential.		
25	(A) DLS of freshly prepared aluminum nanoparticles.	98	
	(B) DLS of mycosynthesized aluminum nanoparticles "after 2months of biosynthesis" using Zetapotential.		
26	XRD of silver nanoparticles (AgNPs)mycosynthesized using Alt. alternata.	100	
27	XRD of copper oxide nanoparticles (CuO-NPs) mycosynthesized using <i>P. ducluxii</i> .		
28	XRD of aluminum oxide nanoparticles (Al ₂ O ₃ NPs)mycosynthesized using Asp.niger.		
29	(A) SEM image of the wear formed on the blank		
	pin (metal to metal), (B) EDX spectrum performed on wear on the blank (metal to metal).		
30	(A) SEM image of the wear formed on the pin lubricated with lubricating grease (L), (B) EDX spectrum performed on wear on the pin lubricated with lubricating grease (L).		
31	(A) SEM image of the wear formed on the pin	111	
	lubricated with grease+ AgNPs (L1), (B) EDXspectrum performed on wear on the pin		
	lubricate		
32	with grease+ AgNPs (L1). (A) SEM image of the wear formed on the pin	112	
	lubricated with grease+ Cu-NPs (L2), (B) EDX		
	spectrum performed on wear on the pin lubricatedwith grease+ Cu-NPs (L2).		
33	(A) SEM image of the wear formed on the pin	113	
	lubricated with grease+ AlNPs (L3), (B) EDX spectrum performed on wear on the pin lubricated		
	spectrum performed on wear on the pin indirected		

	with grease+ AlNPs (L3).	
34	The time of degradation (h)"X-axis" with Conc. (ppm) of (PNP) "y-axis" in case of using Ag-Cu/Al and Cu/Al as photocatalysts.	116
35	The time of degradation (h)"X-axis" with C/Co "Y-axis" in case of using Ag-Cu/Al and Cu/Al as photocatalysts.	117

List of Photos

Photo no.	no. Title	
1	Microphotograph of the slide culture of the	55
	fungalisolate Paecilomyces variotiishowing	
	Phialoconidia& phialids(40X).	
2	Microphotograph of the slide culture of the	
	fungal isolate <i>Penicillium fellutanum</i> showing	
	Phialoconidia& phialids (40 X).	
3	Microphotograph of the slide culture of the	57
	fungal isolate <i>Penicillium duclauxii</i> showing	
	phialoconidia& phialids (40 X).	
4	Microphotograph of the slide culture of the	58
	fungal isolate Alternaria alternata showing	
	phialoconidia & phialids (40 X).	
5	Microphotograph of the slide culture of the	59
	fungal isolate Aspergillus niger showing	
	Phialoconidia& phialids (40 X).	
6	Microphotograph of the slide culture of the	60
	fungal isolate <i>Penicillium rugulosum</i> showing	
	phialoconidia & phialids (40X).	
7	photograph of the slide culture of the fungal	61
	isolate Aspergillus terreus showing	
	phialoconidia & phialids (40 X).	
8	Microphotograph of the slide culture of the	62
	fungal isolate <i>Penicillium variabile</i> showing	
	phialoconidia& phialids (40 X).	

List of Abbreviations

Symbol	Abbreviation
AgNPs	Silver nanoparticles
AlNPs	Aluminum nanoparticles
ANOVA	Analysis of variance
С	Concentration of PNP at time (t)
CFU	Colony forming unit
Со	Intial concentration of PNP
Cr-NPs	Chromium nanoparticles
Cu-NPs	Copper nanoparticles
CVD	Chemical vapour deposition
Dox (Cz)	Dox (Czapek) Agar medium
DLS	Dynamic light scattering
EDX	Energy dispersive X-ray
EP	Extreme pressure
EPRI	Egyptian Petroleum Research Institute
fcc	face centered cubic
FeNPs	Iron nanoparticles
FTIR	Fourier Transform Infra-Red
HRC	Hardness
HRTEM	High Resolution Transmission electron
	microscope
IF	Inorganic fullerene
JCPDS	Joint Committee on Powder Diffraction
	Standards
L	Pin with lubricating grease only (control)
L1	Pin with lubricating grease + AgNPs
L2	Pin with lubricating grease + Cu-NPs
L3	Pin with lubricating grease + AlNPs
MEA	Malt extract agar medium
MIC	Minimal inhibitory concentration
mM	Milli molar
mv	Milli volt
NA	Nutrient Agar medium
nm	Nanometer = (10^{-9}m)
NPs	Nanoparticles
PCs	Phytochelatines
PDA	Potato dextrose agar medium

PNP	Para-nitro phenol
ppm	Part per million
PVD	Physical vapour deposition
RCMB	Regional Center of Mycology & Biotechnology
rpm	Round per minute
SEM	Scanning electron microscopy
SGA	Sabouraud Glucose Agar medium
SPR	Surface Plasmon Resonance
TEM	Transmission electron microscopy
UV-vis	Ultra violet visible spectroscopy
XRD	X-ray diffraction
Zn-NPs	Zinc nanoparticles
θ	Theta
μg	Micro gram