

Effect of Loading Protocol on Peri-implant Soft Tissue Health

(Clinical study)

A Research Submitted in partial fulfillment of the requirements for Doctor Degree in fixed prosthodontics

Presented by

Ashraf Mohamed Sameh Refaie

Assistant Lecturer of Fixed Prosthodontics

Faculty of Dentistry, Fayoum University

B.D.S. (2009) Ain Shams University

Master degree in fixed prosthodontics (2015) Ain Shams University

Faculty of Dentistry

Ain Shams University

2019

Supervisors

Dr. Marwa Mohamed Wahsh

Assistant Professor of Fixed Prosthodontics
Faculty of Dentistry, Ain Shams University

Dr. Maged Mohamed Zohdy

Assistant Professor of Fixed Prosthodontics
Faculty of Dentistry, Ain Shams University

Dr. Ahmad khaled Abo-Elfadl

Assistant Professor of Fixed Prosthodontics
Faculty of Dentistry, Ain Shams University

Acknowledgment

First and foremost, thanks are due to ALLAH the Most Gracious and the Most Merciful.

I would like to express my deepest gratitude and appreciation to my mentor Dr. Marwa M. Wahsh, Associate professor of fixed prosthodontics, Faculty of Dentistry, Ain Shams University for her precious effort, meticulous advice, and his valuable comments.

I would like also to express my heartful thanks and sincere gratitude to Dr. Maged zohdy, Associate Professor of fixed prosthodontics, Faculty of Dentistry, Ain shams university, for his priceless help throughout the details of every part of this study, for his time and effort, his support and guidance, and for his continuous cooperation to complete this work.

I also wish to extend my deepest appreciation and deepest gratitude to Dr. Ahmed Khaled Abo elfadl, Associate Professor of fixed prosthodontics, Faculty of Dentistry, Ain shams university for his patient supervision and his effort throughout this project making it possible.

My personal appreciation & thanks to my staff members and colleagues who participated in this study for their time, effort, support and advice.

Dedication

This work is dedicated to

My Dear Father, the one who always supported me,

My Dear Mother, the one who is always there for me,

My Adorable wife, to whom I owe a lot,

My daughter and son, who enlightened my heart with joy

&

My Amazing Sister & Brother

Without your support I wouldn't have been the person I am now.

List of Contents

List of Figures	II
List of Tables	V
Introduction	1
Review of Literature	3
Statement of Problem	33
Aim of the study	34
Materials and Methods	35
Results	70
Discussion	85
Conclusion and clinical recommendations	95
Summary	96
References	97

List of Figures

Figure 1: IS-II active fixture	. 35
Figure 2: Straight closed abutment	. 35
Figure 3: Putty addition silicon impression material	. 36
Figure 4: Light addition silicon impression material	. 36
Figure 5:Dentotemp temporary cement	. 36
Figure 6: Vipi block PMMA blanks	. 37
Figure 7: VITA ENAMIC blocks	. 37
Figure 8: pre-operative clinical photographs. a-lateral view b-frontal view c-	
occlusal view	. 42
Figure 9: diagnostic casts	. 43
Figure 10: Bone height and width of edentulous area in CBCT	. 44
Figure 11: CBCT cast imaging	. 45
Figure 12: implant placement a- lateral view b- occlusal view	. 45
Figure 13:3D computer simulation a) frontal view b) frontal view with crown c)	
lateral view d) lateral view with crown	. 46
Figure 14: surgical guide	. 47
Figure 15: IS full surgical kit	. 48
Figure 16: Dentis simple guide kit	. 48
Figure 17: Seating the surgical guide	. 49
Figure 18: measuring soft tissue thickness	. 49
Figure 19: tissue punch kit	. 49
Figure 20:a)Soft tissue punching b) tissue removed	. 50
Figure 21: Drilling through the guide	. 50
Figure 22: initial depth drills	. 51
Figure 23: Paralleling pins to ensure correct angulations	.51
Figure 24: Implant placement	. 52
Figure 25: checking primary stability with the 30N/cm torque wrench	. 53
Figure 26: post-operative CBCT	. 53
Figure 27:a- impression post b- perforated tray	
with transfer coping hole	. 54
Figure 28 :Loaded tray seated in patient's mouth	. 55
Figure 29: Final impression with impression post	. 55
Figure 30: Healing cap	. 56

Figure 31: Designing the restoration a) frontal view b) occlusal view with soft
tissue simulation c)frontal view with soft tissue simulation d) frontal view with
crown e) occlusal view with crown
Figure 32 designing tools
Figure 33 Fabricated restoration
Figure 34: Functional occlusion design
Figure 35 :Non-functional occlusion design
Figure 36: abutment screwed to implant
Figure 37 PMMA crown 61
Figure 38: VITA-ENAMIC crown
Figure 39: occlusal view of VITA enamic crown
Figure 40: cement removal using sickle scaler
Figure 41:Periodontal assessment
Figure 42: a: 0 month – b: 3 months – c: 6 months
Figure 43: Bar chart showing Bleeding Index (BI) for different tested groups
regardless of follow-up periods
Figure 44: Bar chart showing Bleeding Index (BI) for different tested groups72
Figure 45: Bar chart showing Gingival Index (GI) for different tested groups
regardless of follow-up periods
Figure 46: Bar chart showing Gingival Index (GI) for different tested groups 75
Figure 47: Bar chart showing Plaque Index (PI) for different tested groups
regardless of follow-up periods
Figure 48: Bar chart showing Plaque Index (PI) for different tested groups77
Figure 49: Bar chart showing the mean Gingival marginal level for different tested
groups regardless of follow-up periods
Figure 50: Bar chart showing the mean Gingival marginal level for different tested
groups
Figure 51: Bar chart showing the mean Probing Depth (mm) for different tested
groups regardless of follow-up periods
Figure 52: Bar chart showing the mean Probing Depth (mm) for different tested
groups81
Figure 53: Bar chart showing the mean Modified pink esthetic score for different
tested groups regardless of follow-up periods
Figure 54: Bar chart showing the mean Modified pink esthetic score for different
tested groups

List of Tables

Table 1:Materials used in this study
Table 2: Frequency (N) and percentage (%) for Bleeding Index (BI) for
different tested groups regardless of follow-up periods
Table 3: Frequency (N) and percentage (%) for Bleeding Index (BI) for
different tested groups
Table 4: Frequency (N) and percentage (%) for Gingival Index (GI) for
different tested groups regardless of follow-up periods
Table 5: Frequency (N) and percentage (%) for Gingival Index (GI) for
different tested groups
Table 6: Frequency (N) and percentage (%) for Plaque Index (PI) for
different tested groups regardless of follow-up periods
Table 7: Frequency (N) and percentage (%) for Plaque Index (PI) for
different tested groups
Table 8: Mean and standard deviation (SD) for Gingival marginal level for
different tested groups regardless of follow-up periods
Table 9: Mean and standard deviation (SD) for Gingival marginal level for
different tested groups
Table 10: Mean and standard deviation (SD) for Probing Depth (mm) for
different tested groups regardless of follow-up periods
Table 11: Mean and standard deviation (SD) for Probing Depth (mm) for
different tested groups
Table 12: Mean and standard deviation (SD) for Modified pink esthetic score
for different tested groups regardless of follow-up periods
Table 13: Mean and standard deviation (SD) for Modified pink esthetic score
for different tested groups

Introduction

Nowadays, esthetic outcomes of the dental restorations are important to the success of the final restoration as health. Indeed, it represents a different aspect of health. Patients demand restorations that are as esthetic as they are functional; many of the implants are placed in the anterior maxillary region and other esthetically important areas.

Implants are the first choice as a treatment modality to restore the missing teeth. Their surfaces have been improved to enhance the Osseo-integration process. Instead of surface being smooth or machined, they are roughened by sandblasting and acid etching, which increases the surface area to which bone can attach. (1)

We want to say that the problem is no longer about osseointegration but the esthetic challenges. (2)

Furthermore, recession of the soft tissue margin may occur after the crown insertion, with the risk of having the titanium part of the implant unit exposed orally. To reduce the risk of disturbing exposure of titanium and to create a favorable emergence profile of the crown, it was suggested to position the head of the implant fixture apical to the cemento-enamel junction of neighboring teeth, and to have the abutment shoulder placed 1-2 mm below the mucosal margin.

The esthetic challenges may be related to the effect of loading protocol on the implant causing bone loss and soft tissue changes. The presence of different loading protocols and crown material makes the immediate loading possible. Using resilient material for crown is important in decreasing load on implant in immediate loading. A resin nano ceramic has an elastic modulus that's comparable to dentin which is much lower than what brittle glass ceramic materials or PFM veneering porcelains provide. This enables restoration to better absorb chewing forces and reduce stress.