

Hexavalent Chromate Reduction by Locally Isolated Bacteria

A Thesis

Submitted in partial fulfillment of the requirement for M. Sc. Degree in Microbiology

Presented by Alaa Fayez Abd Alraouf Elsayed

B. Sc. in Microbiology (2011) Faculty of Science, Ain Shams University

Supervisors Prof. Dr. Einas Hamed El Shatoury

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Prof. Dr. Sahar Tolba Mohamed

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

> Department of Microbiology Faculty of Science Ain Shams University (2019)

Approval Sheet

Hexavalent Chromate Reduction by Locally Isolated Bacteria

By Alaa Fayez Abd Alraouf Elsayed

B. Sc. in Microbiology, Faculty of Science, Ain Shams University, 2011

Supervisors:

• Prof. Dr. Einas Hamed El Shatoury

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

• Prof. Dr. Sahar Tolba Mohamed

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Examining committee:

- Prof. Dr. Ayman Farrag Ahmed Dardeer
 Prof. of Microbiology, Botany Department, Al-Azhar University
- **Prof. Dr. Essam Mohamed Abd El-Aziz Hoballah**Prof. of Environmental Microbiology at the national research center
- Prof. Dr. Einas Hamed El Shatoury
 Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University
- Prof. Dr. Sahar Tolba Mohamed
 Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Date of discussion:	Approval date:	/ /
University council approved:	/ /	

AKNOWLEDGEMENT

First and foremost, my great praise and sincere thanks should be submitted to **Allah**, the most gracious and the most merciful and by the grace of **Allah**, this research work has been accomplished.

I would like to express the deepest appreciation to **Dr. Einas Hamed El Shatoury** Assistant Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University, who suggested the topic of this study and without her guidance, this dissertation would not have been possible.

I want to express my thanks, gratitude and deepest appreciation to **Dr. Sahar Tolba Mohamed** Assistant Professor of microbiology, Microbiology Department, Faculty of Science, Ain Shams University for keen supervision and careful guidance throughout the whole process and particularly while conducting the molecular identification and phylogeny.

Thanks to the Head of Microbiology Department and to all members of Microbiology Department, Faculty of Science, Ain Shams University.

I have no words to express my deep appreciation to my husband **Mohamed** for his endless encouragement.

I dedicate this thesis to the memory of my beloved **mother**. She always encouraged me to be the best.

Alaa Fayez Abd Alraouf Elsayed

بِسُدِ مِاللَّهِ الرَّحْمَزِ الرَّحِدِ مِلْ اللَّهُ وَاللَّهُ بِكُلِّ وَاللَّهُ بِكُلِّ وَاللَّهُ بِكُلِّ شَيْءٍ عَلِيمٌ شَيْءٍ عَلِيمٌ صدق الله العظيم

سورة البقرة الآية رقم (٢٨٢)

This thesis has not been previously submitted for any degree at this or any other university.

Signed

Alaa Fayez Abd Alraouf Elsayed

CONTENTS

Subject	Page
Abstract	1
1. Introduction	3
2. Literature Review	5
2.1. Heavy metals contamination problem	5
2.2. Chromium	6
2.3. Essentiality of chromium	7
2.4. Chromium toxicity	8
2.5. Chromium in industry	10
2.6. Chromium treatment	11
2.6.1 Physical and chemical methods	11
2.6.1.1 Disadvantages of physical and chemical	
treatments	12
2.6.2 Biological treatment	12
2.7. Chromium determination	14
2.8. Impacts of Heavy Metals on the Environment	15
2.9. Heavy metal stress on microbial community	18
2.10. Cr(VI) reducing bacteria	20
2.11. Mechanisms of Cr(VI) resistance by bacteria	21
2.11.1 Mechanisms of Cr(VI) reduction by bacteria	25
2.12. Plasmids conferring resistance to metals	27
3. Materials and Methods	29
3.1. Sample collection	29
3.2. Enumeration of bacteria in sludge and soil	
samples	29
3.3. Isolation of chromium resistant bacterial isolates	30
3.4. Preservation and maintenance of pure bacterial	
isolates	30
3.5. Screening for chromate reducing bacteria	30
3.6. Analytical method	31

Subject	Page
3.7. Identification of bacterial isolates by 16S-rDNA	
Sequencing	33
3.7.1 DNA extraction and purification	33
3.7.2 PCR amplification of 16S-rDNA gene	33
3.7.3 Sequencing of 16S-rDNA	34
3.7.4 Sequence analysis	35
3.8. Optimization of microbial reduction of Cr(VI)	35
3.8.1 Incubation temperature	35
3.8.2 pH	36
3.8.3 Incubation period	37
3.8.4 Cr(VI) concentration	37
3.8.5 Aeration conditions	38
3.8.6 Inoculum size	39
3.9. Sonication	40
3.10. Efficiency of Cr(VI) reduction by consortium in	
soil	40
3.11. Electron microscopy	41
3.11.1 Scanning electron microscope imaging of the	
most potent isolates	41
3.11.2 Transmission electron microscope imaging of	
the most potent isolates	42
List of media used	44
4. Results	46
4.1. Bacterial counts	46
4.2. Isolation of Cr(VI) reducing bacteria	47
4.2.1 Gross morphology	47
4.3. Selection of the most potent Cr(VI) reducing	
isolates	50
4.4. Molecular Identification	51
4.4.1 16S-rDNA sequence analysis	51
4.4.2 Phylogenetic analysis	51
4.5. Optimization of Cr(VI) reduction conditions	54

Subject	Page
4.6. Sonication results	68
4.7. Efficiency of Cr(VI) reduction by consortium in	
soil	69
4.8. Electron microscopy	72
4.8.1 Scanning electron microscopy and EDX	72
4.8.2 Transmission electron microscopy	77
5. Discussion	80
6. English summary	89
7. References	93
8. Appendix	120
Arabic summary	

LIST OF FIGURES

Fig. No.	Title	Pag e
Fig.	Periodic table showing the location of Cr in	
(1):	d-block.	7
Fig.	Mechanisms of chromate transport, toxicity	
(2):	and resistance in bacterial cells.	24
Fig.	Mechanism of bacterial chromium reduction.	
(3):		26
Fig.	Standard calibration curve of Cr(VI) in nutrier	ıt
(4):	broth.	32
Fig.	Standard calibration curve of Cr(VI) in starch	
(5):	nitrate broth.	32
Fig.	Phylogenetic tree of bacterial isolates Ia3, Ia4	
(6):	and Sa1.	53
Fig.	Effect of temperature on percent of Cr(VI)	
(7):	reduction by <i>Bacillus</i> sp. Ia3 and	
	Pseudomonas chlororaphis Ia4.	56
Fig.	Effect of temperature on percent of Cr(VI)	
(8):	reduction by Streptomyces rochei Sa1.	
		57
Fig.	Effect of pH on percent of Cr(VI) reduction	
(9):	by Bacillus sp. Ia3 and Pseudomonas	
	chlororaphis Ia4.	58
Fig.	Effect of pH on percent of Cr(VI) reduction	
(10):	by Streptomyces rochei Sal.	59
Fig.(11)	Effect of incubation period on percent of	
:	Cr(VI) reduction by Bacillus sp. Ia3 and	
	Pseudomonas chlororaphis Ia4.	60

Fig. No.	Title	Pag e
Fig.(12)	Effect of incubation period on percent of	
:	Cr(VI) reduction by Streptomyces rochei Sa1.	61
Fig.(13)	Effect of Cr(VI) concentration on percent of Cr(VI) reduction by <i>Bacillus</i> sp. Ia3 and	
	Pseudomonas chlororaphis Ia4.	62
Fig.(14)	Effect of Cr(VI) concentration on percent of	
:	Cr(VI) reduction by Streptomyces rochei.	63
Fig.(15)	Effect of aeration on percent of Cr(VI) reduction by <i>Bacillus</i> sp. Ia3 and	
	Pseudomonas chlororaphis Ia4.	64
Fig.(16)	Effect of aeration on percent of Cr(VI)	
:	reduction by Streptomyces rochei Sa1.	65
Fig.(17)	Effect of inoculum size on percent of Cr(VI) reduction by <i>Bacillus</i> sp. Ia3 and	
	Pseudomonas chlororaphis Ia4.	66
Fig.(18)	Effect of inoculum size on percent of Cr(VI) reduction by <i>Streptomyces rochei</i> Sa1.	67
Fig.(19)	The effect of consortium on percent of Cr(VI)	
:	reduction in sterile and unsterile soils incubated with 200mg/L Cr(VI) and consortium. Sterile and unsterile controls are	
	also shown in graph.	70
Fig.(20)	The effect of consortium on percent of Cr(VI)	
:	reduction in sterile and unsterile soils incubated with 400mg/L Cr(VI) and consortium. Sterile and unsterile controls are	
	also shown in graph.	71
Fig.(21)	Scanning electron microscope image of	73

Fig. No.	Title	Pag e
:	control sample of <i>Bacillus</i> sp. Ia3.	
Fig.(22)	Scanning electron microscope image of	
:	treated sample of <i>Bacillus</i> sp. Ia3 with Cr(VI).	73
Fig.(23)	EDX of control sample of <i>Bacillus</i> sp.Ia3.	74
Fig.(24)	EDX of treated sample of <i>Bacillus</i> sp. Ia3 with Cr(VI).	74
Fig.(25)	Scanning electron microscope image of control sample of Streptomyces rochei Sa1.	75
Fig. (26)	Scanning electron microscope image of	
:	treated sample of <i>Streptomyces rochei</i> Sal with Cr(VI).	75
Fig.(27)	EDX of control sample of Streptomyces	
:	rochei Sa1.	76
Fig.(28)	EDX of treated sample of <i>Streptomyces</i> rochei Sa1 with Cr(VI).	76
Fig.(29)	Transmission electron microscope image of	70
:	control sample of <i>Bacillus</i> sp. Ia3.	78
Fig.(30)	Transmission electron microscope image of	
:	treated sample of <i>Bacillus</i> sp. Ia3 with Cr(VI).	78
Fig.(31)	Transmission electron microscope image of	
:	control sample of Streptomyces rochei Sa1.	79
Fig.(32)	Transmission electron microscope image of	
:	treated sample of <i>Streptomyces rochei</i> Sal with Cr(VI).	79
Fig.(33)	Location of sites from which sludge and soil samples	_
:	were collected in cairo.	
		120

LIST OF TABLES

Table No.	Title	Page
Table (1):	Thermal cycling conditions.	34
	The inoculum size and equivalent CFU of	
	Bacillus sp. Ia3 and Pseudomonas	
Table (2):	chlororaphis Ia4.	39
	The inoculum size and equivalent CFU of	
	Streptomyces rochei Sa1.	4.0
Table (3):		40
Table (4):	Reagents and solutions.	45
	Total bacterial counts of different sludge and	
Table (5):	soil samples.	46
	Isolates source microscopy and Cr(VI)	
Table (6):	reduction ability.	48
	Effect of temperature on percent of Cr(VI)	
	reduction by <i>Bacillus</i> sp. Ia3 and	
Table (7):	Pseudomonas chlororaphis Ia4.	56
	Effect of temperature on percent of Cr(VI)	
Table (8):	reduction by Streptomyces rochei Sa1.	57
	Effect of pH on percent of Cr(VI) reduction	
	for Bacillus sp. Ia3 and Pseudomonas	
Table (9):	chlororaphis Ia4.	58
	Effect of pH on percent of Cr(VI) reduction	
Table (10):	by Streptomyces rochei Sa1.	59
	Effect of incubation period on percent of	
	Cr(VI) reduction by <i>Bacillus</i> sp. Ia3 and	
Table (11):	Pseudomonas chlororaphis Ia4.	60
	Effect of incubation period on percent of	
	Cr(VI) reduction by Streptomyces rochei	
Table (12):	Sa1.	61
I abic (14 <i>)</i>		O I

Table No.	Title	Page
	Effect of Cr(VI) concentration on percent of	
	Cr(VI) reduction by <i>Bacillus</i> sp. Ia3 and	
Table (13):	Pseudomonas chlororaphis Ia4.	62
1 abic (13).	Effect of Cr(VI) concentration on percent of	02
	Cr(VI) reduction by <i>Streptomyces rochei</i>	
	Sal.	
Table (14):		63
	Effect of aeration on percent of Cr(VI)	
	reduction by <i>Bacillus</i> sp. Ia3 and	
Table (15):	Pseudomonas chlororaphis Ia4.	64
	Effect of aeration on percent of Cr(VI)	
Table (16):	reduction by Streptomyces rochei Sa1.	65
	Effect of inoculum size on percent of Cr(VI)	
	reduction by Bacillus sp. Ia3 and	
Table (17):	Pseudomonas chlororaphis Ia4.	66
14010 (17)0	Effect of inoculum size on percent of Cr(VI)	
Table (18):	reduction by Streptomyces rochei Sa1.	67
14510 (15)1	The effect of consortium on percent of	07
	Cr(VI) reduction in sterile and unsterile soils	
	incubated with 200mg/L Cr(VI) and	
	consortium. Sterile and unsterile controls are	
Table (19):	also shown.	70
	The effect of consortium on percent of	
	Cr(VI) reduction in sterile and unsterile soils	
	incubated with 400mg/L Cr(VI) and	
	consortium. Sterile and unsterile controls are	
Table (20):	also shown.	71

Aim of work

The aim of this study was to isolate, identify bacteria that can biologically reduce hexavalent chromium and enhance their ability to reduce hexavalent chromium then examine their ability to reduce hexavalent chromium as a consortium in a microcosm under optimized conditions.

ABSTRACT

Hexavalent chromium is a toxic heavy metal used in different industries and causes environmental pollution. In this study, three bacterial isolates capable of growing at high concentration of chromium (up to 700 mg/L for some isolates) were isolated from sludge contaminated with Cr(VI). The bacterial isolates were identified by 16S rRNA gene sequence sp., Streptomyces rochei Bacillus analysis as Pseudomonas chlororaphis. Optimization of different factors for Cr(VI) reduction was carried out. Results showed that the optimum pH, temperature and agitation were 7, 30 °C 200 rpm respectively for all isolates, while the percent of Cr(VI) reduction increased with the increase of incubation time and inoculum size and decreased with the increase of Cr(VI) concentration. Bacterial cell wall rupturing by sonication experiment indicated that 14.1 % and 22.3 % of Cr(VI) were accumulated intracellularly and 61.3 % and 21.7 % of Cr(VI) were reduced to Cr(III) for bacteria and actinobacteria respectively. The isolates were mixed and tested as a consortium in Cr(VI) contaminated soil microcosm under optimum conditions and proved a promising reduction with 100 % reduction of 200 mg/Kg and 400 mg/Kg after 4 and 7 days of incubation respectively. Scanning electron microscopy