

بسم الله الرحمن الرحيم

-Call 1600-2

COERCE CORRECTO

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

CORRECT CORRECTOR

جامعة عين شمس التمثية الالكتاءني والمكاوفيلم

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

COEFFEC CARBURATOR

بعض الوثائق

الأصلية تالفة

COLEGO COLEGORIO

بالرسالة صفحات

لم ترد بالأصل

COEFECT CARGINATION

بنير إله الجمز الحيثم

صدق الله العظيم

Microalgae as primary producers for fry feeding of some marine fishes. Butil

Thesis

Submitted to the Faculty of Science Alexandria University For the Degree of Master of Science (Botany)

By

Heba Saad El Said

B.Sc. (1987)

Supervised by

Prof. Dr. Abd- El Fattah Khaleafa

Professor of phycology Faculty of Science Alexandria University

Prof. Dr. Sami H. Shaalan Professor of phycology Faculty of Science Alexandria University

Prof. Dr. Magda I. Zaki

Professor of Fish reproduction National Institute of Oceanography and Fisheries, Alexandria To

all my family with all

my love

Acknowledgment

I wish to express my deepest gratitude and appreciation to my supervisors for their guidance and encouragement.

Words can not express how grateful I am to Prof. Dr. Abd El Fattah Khaleafa and Prof. Dr. Sami Hamed Shaalan. Professors of phycology. Botany Department. Faculty of Science. Alexandria University for their invaluable supervision, untiring efforts, unfailing help, expertise and unending cooperation and kindness.

My great thanks to Prof. Dr. Magda I. Zaki. Professor of fish reproduction. National Institute of Oceanography and Fisheries. for her moral support, for facilities she kindly put under my disposal and for her endless encouragement and love.

I am greatly indebted to Prof. Dr. Meseda M. El Gharabawy.

Prof. of induced spawning, National Institute of Oceanography and

Fisheries, for her great help during protein profile estimation.

Special and deep thanks to Dr. Soad Mohy El-Din. Lecturer of phycology for her great help, supervision throughout the practical work, programming and guidance during the progress of this work.

Special thanks must go to all my colleagues in phycology lab.

Faculty of Science and Fish reproduction lab. Especially Dr. Samira

S. Assem lecturer of fish Biology (N107).

Finally, I wish to extend all my sincere thanks to my lovely mother, my dear father, my husband. Mahmoud Mohamed Esawy, my brothers, sisters and especially to my sweet son Mohamed for their continuous kind help, unreversed encouragement and patience

	Page
Contents	
Introduction and aim of the work	1
Material and Methods	14
Experimental uniformity and standardization	14
Biological materials	14
Culturing	15
Culture medium (Basal medium)	16
Culture conditions	17
Salinity variations	18
Source of wastes	18
Waste treatments	19
Harvesting of cultures	19
Growth parameters	19
A. Determination of Chlorophyll content	20
B. Determination of cell count	21
C. Determination of optical density	22
Analytical methods	23
A. Determination of protein content	23
B. Determination of total free amino acids	24
C. Determination of Fatty acids	25
D. cell ultrastructure	29
Taxonomic studies	30
Protein profile	30
Media and Phast-gel isoelectric (IEF) preparation	
and sample application	31

	Sample preparation	31
	Sample application	31
Resu	ılts	33
	Part I	34
	Section A	35
	The basal medium	35
	1. Growth of Chlorella salina	35
	2. Growth of Nannochloropsis salina	36
	Section B	43
	The wastes	43
	1. Fermentation liquor	43
	i) Effect of different concentrationsof fermentation	
	liquor on the growth parameters of Chlorella	
	salina	43
	ii) Effect of different concentrations of fermentation	1
	liquor on the growth parameters of Nann-	
	ochloropsis salina	44
	2. Molasses	61
	i) Effect of different concentrations of molasses on	
	the growth parameters of Chlorella salina.	61
	ii) Effect of different concentrations of molasses	
	on the growth parameters of Nanno-	
	chloropsis salina	61
	Part II	81
	A. Effect of temperature	
	i) Effect of different temperatures on the growth	
	of Chlorella salina	81

ii) Effect of different temperatures on the growth	
of Nannochloropsis salina.	84
B. Effect of light	87
i) Effect of different light intensities on growth of	
Chlorella salina	87
ii) Effect of different light intensities on the growth	
of Nannochloropsis salina	90
C. Effect of salinity	93
i) Effect of different salinity grades on growth of	
Chlorella salina.	93
ii) Effect of different salinity grades on the growth	
of Nannochloropsis salina.	96
Part III	100
A. Growth and synthesis of total protein and total free	
amino acids under optimization of growth conditions	102
i) In <i>Chlorella salina</i>	102
ii) In Nannochloropsis salina	103
B. Synthesis of some essential polyunsaturated	
fatty acids	104
C: Total Chlorophylls	111
Part IV	121
Discussion	132
Summary	151
Conclusion	160
References	162

INTRODUCTION AND AIM OF THE WORK

Introduction

Marine microalgae are mainly the floating microscopic plant component of the sea water which form the basic food of almost all the larval organisms, either crustaceans, molluscs or fishes. They are primary producers of any aquatic ecosystem and they belong to various classes of algae (Depauw & Parsons, 1989). The important components of microalgae are Diatoms, Dinoflagellates, silicoflagellates (phy-toflagellates), coccolithophores, blue green algae and the "hiddenflora" the Nannoplankters. Among these the diatoms and phytoflagellates are the significant organisms since, they form the primary link in the food chain of the aquatic system.

The success of any hatchery operation depends mainly on the availability of the basic food of microalgae (Gopinathan, 1996). The importance of these microalgae as the essential food of almost all the larval forms, the isolation, maintenance and mass culture of these organisms are a prerequiste in the hatchery systems throughout the world. They are likely to be of great importance as the chief food of molluscan larvae, particularly in the initial stages. Oyster larvae can ingest noting larger than 10 microns and appear to rely for food on minute phytoflagellates excluding the diatoms (Gopinathan, 1984).