سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Geophysical study of Wadi El-Natrun area in the Western Desert of Egypt

A Thesis

Submitted to Geophysics Department, Faculty of Science, Ain Shams University

> for Ph.D. in Science (Geophysics)

Taha Tawfiq Taha Rabeh (B. Sc., M.Sc. Geophysics)

Supervised by

Prof. N.M.Abu Abu shour

Prof. Of Geophysics, Head Geophysics Dept., Faculty of Science,

Ain Shams University

Prof. F. M. Ahmed

Prof. of Geophysics, and Head Geomagnetic Dept., National Research Institute of Astronomy and Geophysics

Cairo 1999

Prof. M. M. Fahim

Prof. Of Geophysics National Research Institute of Astronomy and Geophysics

Dr. M. E. El-Bohoty

Assistant Prof. of Geophysics National Research Institute of Astronomy and Geophysics

iii) 22/15

. Prof. Dr. L. M. Sibh. i., Professoof Science, Ain Shams Units n kiis work Jaring his supervi

:f.Dr. Mohamed Fals. ime of Astronomy and G this monk and at ીમર૦૦ થઈન

" Lade to The staff in 100 Ach 3016 11

ACKNOWLEDGMENTS

In the first place, praise be to ALLAH and gratitude is due to almighty ALLAH who aided and guided me to bring forth this thesis to light. Thanks ALLAH.

I would like to express my great indebtedness and deep gratitude to Prof.Dr.Naser Mohamed Abu Ashour Professor of Geophysics, and Head of Geophysics Department, Faculty of Science, Ain Shams University, for his kind supervision, for doing his best in solving all the problems which I had faced during the long run of research work, the interpretation and guidance in the preparation of this thesis.

I have great pleasure in expressing my deep gratitude to Prof.Dr. Fathy Mohamed Ahmed, Professor of Geophysics and Head of Geomagnetic Laboratory, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, who suggested this point of research, for his joint supervision, valuable scientific discussion, comments offering the instruments for field work and his continuous and effective moral assistance which encouraged me to complete this work.

My heartfelt gratitude to Prof.Dr.A.M.Sabri, Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, , for kind guiding me to an important point in this work during his supervision.

I am also grateful to **Prof.Dr. Mohamed Fahim**, Professor of Geophysics, National Research Institute of Astronomy and Geophysics, for his generous supervision to accomplish this work and also his continuous encouragement for providing me by all the possible facilities during the preparation of this Thesis.

My deep thanks to Dr. Mohamed El-Said Abdel Fattah El Bahoty, Assistant Professor of geophysics, National Research Institute of Astronomy and Geophysics, for his kind supervision, excellent field experience, valuable scientific discussion, comments, and providing me with all requirements for completing this work.

The author expresses his thanks and gratitude to the staff members of the Geomagnetic Laboratory, Dr. Esmat Abdel Aal, Dr.Mokhtar Noshi, Mr.Ahmed Hassan, Mr. Essam.Abboud, for their assistance in the field work.

Finally, from all my heart, I feel indebted to My Family for their great help and permanent care.

to the subcurbos was to

Sie geologicst and geor nognetic anomal; • Ser GPC (197

8,000 550 contra

٠,

Abstract

Wadi El-Natrun area is located between Latitudes 30° 15 '& 30° 30' N, and Longitudes 30°09' & 30° 30' E, covering an area of about 700 sq Kms with distance about 90 Kms northwest Cairo, 40 Km from Rosseta branch. This area is characterized by low relief, arid land form, also contains a large number of lakes and drainage lines.

The purposes of this study (i) Delineate the structural frame work of the study area (ii) Show the role of the separation methods in the resolution of the multisources magnetic implications (iii) Evaluate the study area from the geophysical view (iv) Illustrate the role of the subsurface tectonics in controlling of subsurface water reservoir.

In this respect the available geological and geophysical data are interpreted. These include (i) RTP magnetic anomaly map prepared by the author, (ii) Bouguer anomaly map after GPC (1977), (iii) Compiled geological map (mainly after Conoco and EGPC, 1987) and (iv) Seismic data after EGPC, (1990).

A detailed land magnetic survey was made for measuring the total magnetic field using Proton magnetometer, and more than 550 points were taken. The distance between these stations ranges from 250 m to about 1 Km, and a magnetic map was deduced for the area.

The deduced magnetic map was reduced to the daily variations and Latitudes corrections. After that, it was reduced to North Magnetic Pole, using **Baranov** (1957) method. Also, a bouguer anomaly map between Latitudes 30°00° & 30°30° N and Longitudes 29°40° & 30° 30° E, comprising the surveyed area was used.

The qualitative interpretations have been performed to the anomalies of the RTP magnetic and bouguer anomaly maps. The results show that most of the anomalies of these maps are trending NW - SE, NE - SW and E - W directions.

The regional-residual methods were applied to the potential data using the least square technique with four order of coeffecients. The intensive analysis, of the least square maps shows that the least square maps of the second order represent the best fitted maps with the original. On the other hand, the filtering technique was applied to the potential data. This technique was applied with of three units of coefficients (2.7 - unit, 4 - unit, and 5.3 - unit). The inspection of the filtered magnetic maps revealed that the maps with 4-unit residual, 4-5.3 unit band-pass, and 5.3-unit regional filtered maps are the best maps that represent the magnetic anomalies at shallow, intermediate and deep levels. Furthermore the downward continuation technique has been applied to the potential data. The results show that the downward continued maps at interval 4 Kms gives the highest fluctuation which give indications as it was measured on/or near the basement surface.

The quantitative interpretations have been operated using trend analysis and showed that the RTP magnetic anomaly map indicates that the area under study is affected by fault lines, arranged in six main tectonic trends namely, the Suez N 35° - 45° W, the Syrian Arc trend N 45° - 65° E, N 65° W, The Aqaba trend N 15° - 25° E, and N 75°W arranged according to their decreasing order of predominance in the area. These directions agree in a great limit with the results obtained from the bouguer anomaly map, where the fault lines taking the direction N 35°-45° W is coming in the first order of the predominance.

The depth estimation methods have been performed using two types 1-The most advanced methods (spectral analysis and Werner deconvolution methods) and 2- The straditional methods (tangent, halfwidth, and Pawell methods). The results show that the depth to the basement is about 4 Kms and increases towards the west of the study area. Furthermore, the fault and dike parameters method were applied to the magnetic and gravity maps. The results show that the depth ranges between 3.3 Km and 4 km and the angle of inclination ranges between 30° and 40°. The modeling technique has been applied to the potential data for illustrating the configuration of the basement surface. These models show the depth increase towards the west direction, the magnetic susceptibility ranges between 0.00033 and 0.00044 cgs unit and the density contrast about 0.3 gm/cm³.

An intensive study have been performed to El-Hamra area in order to illustrate the role of the magnetic interpretation in detection of

the subsurface tectonics that controlling the subsurface water reservoir and the surface salt lakes in the area. This study had been performed using separation method of filtering technique, trend analysis, Walter and Mark (1993) technique after modifications, two - dimensional modeling technique and seismic interpretations. The results show a great correlation between the results deduced from the magnetic data, the seismic data and hydrogeologic previous work by other authors. This correlation has proved that the out through carried on of fresh water inside El-Hamra Lake is due to the fault trending NW - SE and extending from the basement and shearing the reservoir rocks. Moreover, the correlation between the deduced tectonic trends and the locations of the lakes present in the area reflects that these lakes are structurally controlled especially by faults taking NW direction.

CIONS ORTHER

LIST OF CONTENTS

Contents Pa	ge
LIST OF FIGURES	iii
LISTOF TABLES	viii
INTRODUCTION	1
CHAPTER I:	
GENERAL GEOLOGY AND PREVIOUS GEOPHYSICAL	
WORK OF THE STUDIED AREA	5
1-1 General geology	6
1-2 Tectonics	12
1-3 Previous geophysical works	16
CHAPTER II:	
LAND MAGNETIC SURVEY	21
2-1. Field work	
2-2. Field procedures and data reduction	
2-3. Construction of the contour map	26
CHAPTER III:	
QUALITATIVE INTERPRETATIONS OF THE POTENTIAL	
DATA	32
3-1 Discriptive and structural indication of the RTP magnetic anomaly map	32
3-2 Discriptive and structural indication of the Bouguer anomal	
map	•
3-3 Regional - residual separation using the least square method	
3-3-a: The residual magnetic anomaly maps using least	
square method	42
3-3-b: Residual gravity anomaly maps using the least	47
square method	47 52
3-4-1: Application of the filtering technique to the RTP	34
magnetic anomaly and Bouguer anomaly maps	54
3-4-1-a: Residual filtered of the RTP magnetic anomaly	J- T
maps	54
3-4-1-b: Regional filtered magnetic maps	58
3-4-1-c: Band-pass filtered magnetic maps	62

	3-4-2-a: Residual filtered gravity maps	54
	3-4-2-b: Regional filtered gravity maps	58
0	3-4-2-c: Band-pass filtered gravity maps	
្សា 💮	3-5 Downward continued field	
**	3-5-1: Application the downward technique to	
	the magnetic maps	
	3-5-2: Application the downward technique to	
	the gravity data	80
C	APTER IV:	
	QUANTITATIVE INTERPRETATION OF THE POT	'ENTIAL
	DATA	
	4-1 Basic limitations of the theory	
	•	
	4-2 Investigation of tectonics of the area from poter	
	data	
	4-3 Depth estimation methods	
	4-4 Calculation of the fault and dyke parameters t	
	Hilbert transform,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<i>£</i> .	4-5 Two-Dimensional modeling	170
C	APTER V:	•
	Qualitative and quantitative delineation of the sha	ipe and
	parameters of El-Hamra water reservoir burried struc	
	nagnetic and seismic methods	
	5-1 General hydrogeological setting of the area	
	5-2 Previous hydrogeologic work	
	5-3 Methodology and scope of studies	
	5-3-1 Descriptive and structural indication of the	
	magnetic anomaly map and filtered maps	
	5-3-2 Application of the trend analysis technique	
	5-3-3 Walter and Mark method (1993)	
	5-3-4 Application of the two-dimensional modelin	
	technique	
	5-3-5 Seismic interpretation	
٠.	5-4 Conclusion	
~		
Su	nmary and conclusions	251
Re	erences	258
۸.	hio cummany	