

MODELLING AND CONTROL OF UNDERACTUATED SYSTEMS APPLIED TO A UAV WITH A CABLE-SUSPENDED LOAD

By

Mohamed Samir Mohamed Eldemerdash

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

MODELLING AND CONTROL OF UNDERACTUATED SYSTEMS APPLIED TO A UAV WITH A CABLE-SUSPENDED LOAD

By

Mohamed Samir Mohamed Eldemerdash

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

Under the Supervision of

Prof. Gamal M. El Bayoumi Dr. Osama Saaid Mohamady

Professor of Flight Mechanics and Control
Aerospace Engineering Department
Faculty of Engineering, Cairo University

Assistant Professor

Aerospace Department

Faculty of Engineering, Cairo University

MODELLING AND CONTROL OF UNDERACTUATED SYSTEMS APPLIED TO A UAV WITH A CABLE-SUSPENDED LOAD

By

Mohamed Samir Mohamed Eldemerdash

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

Prof. Gamal M. El Bayoumi, Thesis Main Advisor

Prof. Ayman Hamdy Kassem, Internal Examiner

Prof. Omar El Farouk Abd El Hameed, External Examiner (Professor at Military Technical College)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

Engineer's Name: Mohamed Samir Mohamed Eldemerdash

Date of Birth: 4/10/1993 **Nationality:** Egyptian

E-mail: mohamed.eldemerdash@cu.edu.eg

Phone: +02 01115182720 Address: Postal Address

Registration Date: 1/3/2017 **Awarding Date:** -/-/2019

Degree: Master of Science **Department:** Aerospace Engineering

Supervisors:

Prof. Gamal M. El Bayoumi Dr. Osama Saaid Mohamady

Examiners:

Prof. Gamal M. El Bayoumi(Thesis main advisor)Prof. Ayman Hamdy Kassem(Internal examiner)Prof. Omar El Farouk Abd El Hameed(External examiner)

(Professor at Military Technical College)

Title of Thesis:

Modelling and Control of Underactuated Systems Applied to a UAV with a Cable-Suspended Load

Key Words:

Quadcopters; Underactuated Mechanical Systems; Spherical Pendulum; Linear Quadratic Regulator; Unmanned Aerial Vehicle

Summary:

In this thesis, a nonlinear eight degree of freedom (8DOF) mathematical model was derived from the first principles for a quadcopter when its C.G. is shifted from its geometric centroid and when a cable-suspended load is hanged at a general position. The nonlinear model was then linearized using small disturbance theory. An adaptive controller based on Linear Quadratic Regulator (Adaptive LQR) was designed and simulated using the nonlinear model to stabilize the system and track a given trajectory while minimizing the swinging motion of the suspended load. Using MATLAB/SIMULINK, the designed controller showed good performance in both stabilizing the system and tracking different trajectories like circular, infinity-shaped, helical and rectangular trajectories.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed Samir Mohamed Eldemerdash	Date:/
Signature:	

Acknowledgements

All praise and thanks are due to the Almighty Allah who always guides me to the right path and has helped me to complete this thesis. There are many people whom I have to acknowledge for their support, help and encouragement during the journey of preparing this thesis. So, I will attempt to give them their due here, and I sincerely apologize for any omissions.

First and foremost, I would like to record my gratitude to my supervisors Prof. Gamal M. El Bayoumi and Dr. Osama S. Mohamady for their supervision, advice and guidance from the early stage of this research as well as giving me extraordinary experiences throughout the work. Above all and the most needed, they provided me unflinching encouragement and support in various ways. I am really indebted to them more than they know.

I wish to express my thanks and gratitude to my parents, the ones who can never ever be thanked enough, for the overwhelming love and care they bestow upon me, and who have supported me financially as well as morally and without whose proper guidance it would have been impossible for me to complete my higher education.

Table of Contents

Di	sclair	ner	j
A	cknow	vledgements	ii
Ta	ble of	f Contents	iii
Li	st of '	Tables	vi
Li	st of l	Figures	vii
No	omeno	clature	ix
Al	brev	iations	xii
Al	ostrac	et	xiii
1	Intr	oduction	1
	1.1 1.2 1.3 1.4	Introduction	1 2 2 2
2	Lite	rature Review	3
	2.1	Introduction	3
	2.2	Underactuated Mechanical Systems	3
		2.2.1 Definition	3
		2.2.2 Mathematical Description	4
		2.2.3 Reasons and Causes of Underactuation	5
		2.2.4 Motivation	7 9
	2.3	Quadcopters	9
	2.3	2.3.1 Mechanics of Quadcopter	9
		2.3.2 Modelling of Quadcopter	11
		2.3.3 Control of Quadcopter	11
	2.4	Summary	13
3		lelling	14
	3.1	Introduction	14
	3.2	Equations of Motion of a Rigid Body with Body Axes at its Center of Gravity	14
		Gravity	14 14
		3.2.2 Kinematics	16
		3.2.3 Euler-Newton Approach	17
		3.2.4 Euler-Lagrange Approach	18
	3.3	Equations of Motion of a Rigid Body with Body Axes <u>not</u> at its Center of	
		Gravity	22

		3.3.1 Kinematics	22
		3.3.2 Equations of Motion	23
	3.4	Modelling of Spherical Pendulum with Moving Hanging Point	24
		3.4.1 Derivation of Transformation Matrix between Spherical Coordi-	
		nates and Cartesian Coordinates	24
		3.4.2 Kinematics	25
		3.4.3 Pendulum Equations of Motion	
	3.5	Quadcopter with Cable-Suspended Load Model	
		3.5.1 System Description	
		3.5.2 Rotational Matrices	
		3.5.3 Kinematics	
		3.5.4 Forces and Moments Acting on the Quadcopter	
		3.5.5 Equations of Motion	
	3.6	Linearization	
		3.6.1 Linearization of Rotation Matrices	
		3.6.2 Linearization of Kinematics	
		3.6.3 Linearization of Pendulum Equations of Motion	
		3.6.4 Linearization of Forces and Moments Equations	
		3.6.5 Linearization of Equations of Motion	
	3.7	Summary	
	3.1	Summary	50
4	Con	troller Design	41
	4.1	Introduction	41
	4.2	Linear Quadratic Regulator	
	4.3	Special Forms of LQR	
		4.3.1 Cross Term Performance Index	
		4.3.2 Optimization on Selected Outputs	
		4.3.3 Adaptive LQR	
	4.4	Linear Quadratic Tracking	
	4.5	Summary	
5	Resu	ults and Discussion	48
	5.1	Introduction	48
	5.2	Conventional Quadcopter	48
		5.2.1 System Parameters	48
		5.2.2 Regulating	49
		5.2.3 Tracking	52
	5.3	Quadcopter with Shifted Center of Mass	56
		5.3.1 System Parameters	58
		5.3.2 Regulating	
		5.3.3 Tracking	62
	5.4	Quadcopter with Suspended Load at its Centroid	
	-	5.4.1 System Parameters	65
		5.4.2 Regulating	
		5.4.3 Tracking	
	5.5	Quadcopter with Suspended Load including all Eccentricities	
	5.5	5.5.1 System Parameters	
		5.5.2 Regulating	
			1.)

	5.6	5.5.3 Tracking	75 78
_			
6	Con	clusion and Future Work	79
	6.1		79
	6.2	Thesis Contribution	80
	6.3	Recommendation for Future Work	80
Re	eferen	ces	81
Ap	_	ix A Derivation of an Expression for the Rotational Equations of Mo- of a Rigid Body with Body axes <u>not</u> at its center of gravity	87
Αŗ	pend	ix B Codes and Simulation Programs	90
	B.1	Program A: Quadcopter without a Cable-Suspended Load	92
		B.1.1 Main File	92
		B.1.2 System Parameters and Initial Conditions File	93
		B.1.3 Linearization Function File	95
			96
	B.2		98
			98
		B.2.2 System Parameters and Initial Conditions File	99
		B.2.3 Linearization Function File	02
		B.2.4 Reference Trajectories File	
Ar	pend	ix C SIMULINK Programs 1	04
•	C.1	Program A: Quadcopter without a Cable-Suspended Load	04
	C.2	Program B: Quadcopter with a Cable-Suspended Load	