

Modified NUTRIC Score and Outcomes in Critically III Patients: a Meta-Analysis

Submitted For Partial Fulfillment of Master Degree in Clinical Nutrition

By

Daila Ahmed Ibrahim Mohamed

M.D., of Anaesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Under supervision of

Prof. Reem Hamdy ElKabarity

Professor of Anaesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Prof. Moustafa El-Houssinie Moustafa

Professor of Community Environment and Occupational Medicine Faculty of Medicine - Ain Shams University

Dr. Hanaa Abdalla El Gendy

Assistant Professor of Anaesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof.** Reem Hamdy ElKabarity, Professor of Anaesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University for her meticulous supervision, kind guidance, valuable instructions and generous help.

I am deeply thankful to **Prof.** Moustafa El-Houssinie Moustafa, Professor of Community Environment and Occupational Medicine Faculty of Medicine - Ain Shams University for his great help, outstanding support, active participation and guidance.

Special thanks are due to **Dr. Hanaa Abdalla El Gendy,** Assistant Professor of Anaesthesia, Intensive Care and
Pain Management Faculty of Medicine - Ain Shams University
for her sincere efforts, fruitful encouragement.

Daila Ahmed Ibrahim

Dedication

Dear **Prof. Dr. Randa Reda,** great thanks, you offered to us a new great Community, valuable knowledge by professional professors from many departments and best friends for ever.

Dear **Prof. Dr. Reem ElKabarity**, great thanks for continuous help and support since year and still going on.

Words can never express my sincere thanks to My Family and My Loving Husband for their generous emotional support and continuous encouragement, which brought the best out of me. I owe them all every achievement throughout my life.

I would like to express my everlasting gratitude to all My Professors, Colleagues and Friends, so many of them influenced, encouraged and inspired me throughout the years. I wish them the best of all.

List of Contents

Title	Page No.	
List of Tables		
List of Figures	ii	
List of Abbreviations		
Introduction	1	
Aim of the Work		
Review of Literature		
Malnutrition in ICU	5	
 Nutritional Screen Tests for Critically Ill Patient 	s22	
Nutric Score	31	
Methodology	40	
Results		
Data Analysis68		
Conclusion		
Summary		
References'		
Arabic Summary		

List of Tables

Table No.	Title Page No.	
Table (1):	Shows laboratory markers as an	
	indicators for malnutrition	16
Table (2):	Shows subjective global assessment variables	18
Table (3):	Determinants of Effective Screening Tests	23
Table (4):	Difference between nutrition screening	
	and assessment	24
Table (5):	Suggestions of some nutritional screening	
	and assessment	25
Table (6):	Nutritional Risk Screening 2002	28
Table (7):	Final MST	29
Table (8):	NUTRIC score and mNUTRIC score	34
Table (9):	SOFA Socre	38
Table (10):	Illustrating the seven RCTs included in	
	the Meta – Analysis	46
Table (11):	Mortality - Risk Ratio	50
Table (12):	Mortality Risk Difference	53
Table (13):	Predictive performance of mNUTRIC score	
	was found regarding 28-days mortalities	
	based on discriminative abilities	55
Table (14):	ICU length of stay	57
Table (15):	High mNUTRIC score to low mNUTRIC	
	score according to ventilator free days	59
Table (16):	Mechanical ventilation (days) when high	
	mNUTRIC compared to low mNUTRIC	61
Table (17):	Systematic review results for gender, age	
	and number of patients when high	
	mNUTRIC score compared to low	
	mNUTRIC score.	64
Table (18):	Systematic review results for ventilator free	
	days when high mNUTRIC score compared to	
	low mNUTRIC score also result for mNTRIC	
	score sensitivity, specificity, positive predictive	
	value and negative predictive value	66

List of Figures

Fig. No.	Title Page No.	
Figure (1):	Shows mediators released during critical illness that will end by catabolism and malnutrition	Q
Figure (2):	Relation between infection and malnutrition	
Figure (3):	This section included some variables for detection of malnutrition in ICU patients	
Figure (4):	This algorithm represent a full plan for diagnosis of nutritional status of patients in ICU and management of malnutrition if present	22
Figure (5):	The 'Malnutrition Universal Screening Tool' ('MUST') is reproduced here with the kind permission of BAPEN	
Figure (6):	Conceptual model for nutrition risk assessment in the critically ill	
Figure (7):	Forest plot – Risk Ratio	
Figure (8):	Funnel plot – Risk Ratio	
Figure (9):	Forest plot - Risk Difference	
Figure (10):	Funnel plot – Risk Difference	54
Figure (11):	Forest plot – predictive performance	56
Figure (12):	Funnel plot – predictive performance	56
Figure (13):	Forest plot – ICU length of stay in days	58
Figure (14):	Funnel plot – ventilator free days	60
Figure (15):	Forest plot – mechanical ventilation	
	days	61
Figure (16):	Forest plot – Apache II score	62
Figure (17):	Forest plot – SOFA	63

List of Abbreviations

Abb.	Full term
AND	Academy of Nutrition and Diabetes
APACHE	Acute physiology and chronic health
	evaluation
<i>ARR</i>	Absolute Risk Reduction
ASPEN	American Society for Parenteral and
	Enteral Nutrition
<i>BAPEN</i>	British Association for Parentral, Entral
	Nutrition
<i>BMI</i>	Body mass index
CI	Confidence intervals
	Chronic Obstructive Pulmonary Disease
	C-reactive protein
	Deep vein thrombosis
	Fixed-effects method
	Gastrointestinal tract
HCUP	Health care cost and utilization project
	Hand grip strength
	Intensive care units
<i>MAG</i>	Malnutrition Advisory Group
	Mini Nutritional Assessment
mNUTRIC	Modified NUTRIC score
	Malnutrition screening tool
	Malnutrition universal screening tool
	Number Needed to Treat
NRS	Nutritional risk screening
<i>NS</i>	Nutritional screening
NUTRIC	Nutrition Risk in the Critically Ill
	Random-effects method
	Relative risk
	Subjective Global Assessment
	Sarcopenia index
	Sequential organ system failure

Introduction

Malnutrition was traced back when Florence Nightingale wrote "starving amongst plenty of food" when she described hospitalized soldiers during Crimean war in 1860, after one hundred years (Butterworth, 1974) described malnutrition in hospital as "the skeleton in the closet" and he called for recognition and treatment of malnutrition (Lee and Heyland, 2019).

Malnutrition is considered an independent factor for patient mortality and morbidity in hospitals and it's one of the main cause of increased health care cost. There is no unified definition for malnutrition, also no standard method for screening and assessment so all this defects lead to confusion and varying in practice among doctors across intensive care units (ICUs) in the whole world (Lee and Heyland, 2019).

The importance of the role of inflammation as a major risk factor recently has been recognized. The stress of the catabolic state make the critically ill patient at a high risk to develop malnutrition adding to it delayed or inadequate nutritional assessment. Iatrogenic under feeding with or without preexisting malnutrition will leads to increased risk of complication such as increased 28-days mortality, ICU length of stay and also increased days on mechanical ventilation (Lee and Heyland, 2019).

Joint commission international (JCI), they give international certification and accreditation in more than one hundred countries. They work to improve quality of health care and patients safety by offering advisory services and education, one of their requirements to give this certificate for hospitals is the presence of nutrition team to follow up the patients nutrition to avoid hazards of malnutrition.

It was thought that serum proteins as albumin and prealbumin are markers for malnutrition, the current role is that laboratory markers by themselves are not reliable markers for malnutrition but can be used as a complement during diagnosis of malnutrition. Recent studies suggest using mNUTRIC score for screening and subjective global assessment for nutritional assessment and to complement with other parameters available in each critical care setting such as laboratory markers, sarcopnia index and hand grip strength (Brantley and Mills, 2012).

Especially in critically ill patients nutritional status is strongly linked to clinical outcomes. Screening of nutritional status in ICU patients is not a straight forward processes this is due to most of nutritional screening tool used for

Introduction

hospitalized patients not suitable for critically ill patients because important parameters such as accurate history of dietary intake and weight loss is difficult to obtain as most of them either sedated or on mechanical ventilation and change in weight can be affected by edema due to underlying disease or by large volume of fluids for resuscitation to maintain hemodynamic stability (Lee and Heyland, 2019).

Nutritional management should include: these parameters: Screening, assessment, monitoring & outcome, communication and audit (White et al., 2012).

Early diagnosis and accurate detection of patients who are at risk of malnutrition followed by proper management is mandatory. Role of inflammation and its effect on the nutritional status of ICU patients should be considered (**Tappenden et al., 2013**).

Aim of the Work

This meta-analysis study has been done to evaluate the mNUTRIC as a screening tool for nutrition risk in critically ill patients. And the association between the score and 28 days mortality as a primary outcome and ICU length of stay, days on mechanical ventilation and rate of infection as secondary outcomes.

Chapter (1)

Malnutrition in ICU

Usually malnutrition in critically ill patient is an acute condition and its definition varies among year, between organization and individual researchers but broadly malnutrition was described as nutritional status where there is either leak or excess of micro and/ or macronutrients that may have bad effect on body size, function, composition and also the clinical outcomes in ICU so malnutrition includes under and over nutrition. Another simple expressing definition of acute malnutrition in ICU is decreased in food intake or illness resulting in edema and weight loss. Usually in critical care setting undernutrition is the main cause of malnutrition (Hamilton and Boyce, 2013).

Malnutrition leads to unfavorable consequences in ICU patients such as increase infection rate, increased readmission and prolonged morbidity, increased days on mechanical ventilation. The intensivist facing two categories of patients coming to the ICU healthy category as regard thier nutritional status such as traumatic patients (**Hamilton and Boyce, 2013**). In contrary, the other category of patients coming to the ICU patient with non health background as regard thier nutritional already critically ill with advanced

internal or surgical problem such respiratory, metabolic disease, prolonged cancer. So nutritional status will be different among the two types of patients coming to the ICU, traumatic patients considered healthy one. So nutritional status usually will be normal (NACNS, 2017).

Prevalence of malnutrition

High prevalence of malnutrition was estimated in hospitals especially among ICU patients, its estimated that malnutrition impacts at least 1 in 3 patients in developing countries at the hospital admission. If its neglected more and more patients nutritional status will decline and they become malnourished during their hospital stay. Recently in multiple Australian studies reported that malnutrition prevalence was 12-53% in acute critically ill patients (**Kirkland et al., 2013**).

Health care cost and utilization project (HCUP) in 2013 identified malnutrition as some diagnostic codes: which are nutrition's neglect, protein – calorie malnutrition, cachexia, post surgical malnutrition under weight, weight loss and failure to thrive. The most common type is protein calorie malnutrition (63.9%). So more work is needed to recognize malnutrition in hospitalized patients especially in ICU and to treat malnutrition properly (Weiss et al., 2009).

Also, HCUP found that patients impacted by malnutrition during their hospital stay most frequently include patients more than 65 years old, lower socioeconomic and environmental condition of the patients, already under weight, long duration of illness, diarrhea of illness, type, severity of organ system dysfunction (Weiss et al., 2009).

Pathophysiology of malnutrition:

Two main causes lead to malnutrition in ICU patients stress catabolism and inadequate intake. It can be explained through the pathophysiology of critical illness which divided into two phases early phase secretion of catabolic hormones such as (glucagon, cortisol, catecholamines), they act to mobilize (muscle and adipose tissue) for generation of glucose-amino acids and free fatty acids for energy yielding. Further, catabolism due to secretion of proinflammatory cytokines TNF\alpha IL-6 as a result of acute insult in the body so critical ill patients are at high risk to develop malnutrition especially if the patients before insult has some sort of malnutrition due to any cause such as chronic illness or cancer and the second stage which is loss of body cell mass and at this stage priority to maintain vital organ system functions and hence increase risk of malnutrition in critical ill patients especially if malnutrition already present before the acute insult so degree of malnutrition is different according to the patient status and medical history (Lee and Heyland, 2019).