

Assessment of Different Regiment of Progesterone Administration In Luteal Phase Support In IVF Cycles

Thesis

Submitted for partial fulfillment of M.Sc. Degree

in Obstetrics & Gynecology

By

Gihan Zarad Ahmed (M.B., B.ch) Mansoura University - 2002

Supervised by

Dr. Sherif Ahmed Abdel-Hamed

Professor of Obstetrics and Gynecology
Faculty of Medicine
Ain Shams University

Dr. Khaled Saeed Mousa

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Dr. Noha Hamed Rabei

Lecturer of Obstetrics and Gynecology
Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University
2008

تقييم الطرق المختلفة لتناول هرمون البروجيستون لتدعيم مرحلة الجسم الأصفر في عملية أطفال الأنابيب

الطبيبة/ جيهان زرد أحمد

2002

أد/ شريف أحمد عبد الحميد

أد/ خالد سعید موسی

د/ نهی حامد ربیع

كلية الطب جامعة عين شمس 2008

First and above all thanks for Allah who enabled me to achieve this work.

I wish to express my deepest thanks and gratitude to Prof. Dr. Sherif Ahmed Abdel-Hamid, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for his valuable help and sincere guidance.

I am particularly indebted to Prof. Dr. Khaled Saced Mousa, Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University who spared no efforts in helping me through this thesis, thanks for his keen supervision and follow up.

I am grateful to Dr. Noha Hamed Rabei, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University for his great help for me in making this work to see the light.

My ever lasting thanksfulness, best regards and wishes to all my professors and members of obstetrics and Gynecology, Ain Shams University.

4

CONTENTS

	Page
• Introduction	
Aim of the work	2
Review of literature	3
o Progesterone Hormone	38
Normal luteal phase physiology	52
o Luteal phase defects	82
o Luteal phase support in IVF cycle	152
• References	
Arabic summary	

LIST OF TABLES

Table no.	Title	Page
1.	Classification of progesterone.	9
2.	Classification of cell type (small, large)	58
3.	Number of Cycles with Normal and Inadequate Progesterone Levels and Endometrial Histologic Features	76
4.	Demographic characteristics of the patients.	112
5.	Progesterone levels in the different groups.	112
6.	implantation rate between the three	114
7.	Pregnancy rate between the 3 groups.	115

LIST OF FIGURES

No.	Figure	Page
1.	Conversion of cholesterol to progesterone hormone	4
2.	Ball and stick representation of progron hormone	4
3.	Chemical structures of P related to 17 – hydroxyl protein acetate	12
4.	Chemical structures of P related to testosterone	12
5.	Progesterone receptor A &B	13
6.	In the follicular phase basement membrane separates theca layer from the granulose layer after ovular	20
7.	Corpus luteum function represensis abalance between luteotropic and luterlytic factor	20
8.	Relations between large and small luteal cells type	27
9.	Hormonal changes during \ovulation and luteal phase	30
10.	Mean progesterone levels in cycle of women with anormal corpus luteum function	36

11.	LPD can occure sporadically throughout the reproductive life span of normal women	39
12.	Calculation of ESH for both normal women (women with LPD)	49
13.	Day relative to LH surge	49
14.	LH secretory pattern in the women with LPD is more rapid and LH pulses are of lower amplitude	51
15.	Progesterone levels following an ultra rapid gonadotropic secretion	53
16.	Gverage daily levels of bioactive LH	56
17.	Luteinizing hormone secretion pattern over 12 hours	57
18.	Plasma FSH and LH levels in normal and short luteal phase cycles	66
19.	LV pulse frequency in normal women and women with luteal phase deficiency	68
20.	Difference between the two results of histologic dating	72
21.	Endometrial biopsy intrapretation that correlated within 2 days using different metho of ovulation prediction	74
22.	The frequency distribution of the difference between histologic dating and chronalgic dating by each method.	76

23.	Method of evaluation of luteal phase function	77
24.	Pathophysiology of luteal phase defects	80
25.	Serum P levels in conception cycles and non conception cycles during luteal phase	81
26.	Composite pattern of LH FSH. E and P from the sera of three monkeys treated with charcoal extracted porcine follicular fluid	82
27.	Prolactin LH, GFSH, total estrogen and progesterone concentration in a cycle of women studied	83
28.	Progesterone capsules doe study	88
29.	Relations between the different route of administration and serum p level on day 1 and day 7	123
30.	The implantation rate between the different group B	124
31.	Pregnancy rate in different groups	125

List of abbreviation

BBT	Basal body temoperature
BUS	B up stream segment
CL	Corpus luteum
CPR	Clinical pregnancy rate
DR	Delivery rates
E2	Estradiol
ET	Embrgo transfere
FSH	Follicular stimulating hormone
GIFT	Garnate intra fallopian transfer
GnRHa	Gonado tropin releasing hormone agonist
НСО	Human chroionic gonadotropin
HMG	Human menopsaul gonadotropin
IM	Intramuscular
IVF	Invitro fertilization
LDL	Low density lipoprotein
LH	Luteinize hormone
LPD	Luteal phase defect
MCR	Metabolic clearance rate
MMB	Matrix metallo proteinases
OHSS	Ovarian hyperstimulation syndrome
OPR	Ongoing pregnancy rate
P	Progesterone
PEP	Progrestogen associated endometrial protein
PFF	Porcine follicular fluid
PR	Progesterone receptor
TIMP	Tissue inhibitors of metallo prote
VEGF	Vascular endothelial growth factor

Introduction

Edwards and Steptoe (1980) were the first authors who suggested that there was an iatrogenic luteal phase defect in women undergoing in vitro fertilization embryo transfer (IVF-ET).

The need for luteal phase support following ovulation induction for IVF-ET in cycles using gonadotrophin releasing hormone agonist (GnRHa) has become a consensus.

Methods of luteal phase support include corpus luteum stimulation to secrete endogenous oestrogen and progesterone by serial injections of human chronic gonadotrophin (hCG) or with exogenous replacement of progesterone (*Friedler et al.*, 1999).

The use of hCG for luteal phase is associated with a marked increase in the risk of ovarian hyperstimulation syndrome (OHSS) there for progesterone is the preferred choice (*Pabuccu and Akar*, 2005).

Micronized progesterone induces endometrial maturation and leads to pregnancies following IVF-ET or during cycles of oocytes donation (*Friedler et al.*, 1999).

Micronized progesterone is almost completely absorbed after administration by oral route but, due to the important metabolic inactivation during the first hepatic pass, bioavailability of oral progesterone is notably poor reaching values lesser than 10% (*Gallardo et al.*, 2004).

Aim of the work

It is a prospective study to assess the efficiency of protesterone in luteal phase support either through (a) oral (b) vaginal (c) intramuscular routes in 30 infertile women undergoing IVF and receiving progesterone for support of luteal phase.

Progesterone biosynthesis

Biochemistry

Progesterone is synthesized from cholesterol in a two step enzymatic reaction. First, cholesterol is converted to pregnenolone within the mitochondria in a reaction catalyzed cytochrome P450 cholesterol side chain cleavage enzyme, (*Cunningtiam et al.*, 2005). Pregnenolone leaves the mitochondria and is converted to progesterone in the endoplasmic reticulum by two cytoplasmic enzymes, 3β -ondehydrogenase and $\Delta 4,5$ isomerase. The dehydrogenase converts the 3-0H group of pregnenolone to a3 keto group and the isomerase moves the double bond from the B ring to the A ring to produce progesterone (*Stanczyk*, 1997).

Production of progesterone

Only one natural progestogen namely, progesterone, has major biologic significance. Progesterone is secreted by the ovary and adrenal gland and during pregnancy by the placental trophoblast. Another progestogen, 17 hydroxy progesterone, is also secreted by the ovary and adrenal; however, this compound is virtually devoid of progestational activity (*Stanczyk*, *1997*).

Menstrual cycle

During the follicular phase of the menstrual cycle, the production rate and circulating levels of progesterone are low (< I mg/day and <0.5 ng/mL, respectively).