STUDIES ON SOME FACTORS AFFECTING THE SOLUBILIZATION OF P IN THE RHIZOSPHERE

 $\mathbf{B}\mathbf{y}$

ROOKAYA SALAH MAHMOUD HOSSIEN

B.Sc. Agric. Sc. (Plant production), Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

> MASTER OF SCIENCE in Agricultural Sciences (Soil)

Department of Soil Science Faculty of Agriculture Ain Shams University

Approval Sheet

STUDIES ON SOME FACTORS AFFECTING THE SOLUBILIZATION OF P IN THE RHIZOSPHERE

By

ROOKAYA SALAH MAHMOUD HOSSIEN

B.Sc. Agric. Sc. (Plant production), Ain Shams University, 2012

hesis for M.Sc. degree has been approved by:
l-Sayed Mohamed El-Sayed El-Sikhry
rof. Emeritus of Soil Science, Faculty of Agriculture, Suez Canal niversity
ohamed Ahmed Mahmoud Mostafa
rof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams niversity
Iohamed Aly Osman Elsharawy
rof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams niversity
bdelmonem Mohamed Elgala
rof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams niversity

Date of Examination: 27 / 2 / 2019

STUDIES ON SOME FACTORS AFFECTING THE SOLUBILIZATION OF P IN THE RHIZOSPHERE

By

ROOKAYA SALAH MAHMOUD HOSSIEN

B.Sc. Agric. Sc. (Plant production), Ain Shams University, 2012

Under the supervision of:

Dr. Abdelmonem Mohamed Elgala

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Aly Osman Elsharawy

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Abd-El Fattah Eid

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Rookaya Salah Mahmoud Hossien. Studies on some Factors Affecting the Solubilization of P in The Rhizosphere. Unpublished M.Sc. Thesis, Department of Soil Science, Faculty of Agriculture, Ain Shams University, 2019.

This study was carried out to explore the effect of some factors i.e. CaCO₃, pH, organic matter (humic acids, H.A) and clay mineral (bentonite) on the availability and behavior of phosphorus in rhizosphere and non rhizosphere zone as well as dry weight and P content of phaseolus plant grown on calcareous and noncalcareous sandy soils. Three experiments were conducted as follows: an incubation experiment using plastic bottles containing acid washed sand mixed with the used treatments i.e. CaCO₃, bentonite, humic acid (H.A) at different rates to investigate their effect on availability of P. Results showed that, in general, both of CaCO₃ and incubation time significantly decreased the NaHCO₃- extractable P, the increase of pH reduced the extracted phosphorus. The increase of available phosphorus went hand by hand with increasing both of H.A application to soil and incubation time, while the phosphorus decreased significantly with available increasing rate of the added bentonite as well as incubation time.

A second experiment using a split medium technique was conducted to study the effect of CaCO₃, pH, humic acid, bentonite and root exudates on the pH, P solubility in the root growth medium and P concentration in bean plants (Viciafaba var. balady). Results showed that The lowest significant soluble P values were found in the treatments of control (without P), but the concentrations of P in roots and shoots of bean plant received (super phosphate, (S.P) + bentonite + humic acid (H.A), rock phosphate (R.P)bentonite humic acid (H.A), super phosphate, (S.P) + humic acid (H.A) and rock phosphate (R.P) + humic acid (H.A)) treatments were 1.83, 1.17, 1.14 and 1.0% for roots and 2.07, 2.03, 1.72 and 1.25% for shoots, respectively.

A third experiment was carried out under greenhouse conditions to study the effect of the different treatments on the availability of P in calcareous and noncalcareous sandy soils. The treatments of this experiment depended on the ofexperiments. Phaseolus (Phaseolus results previous vulgaris - Common Bean) was chosen to evaluate the effect of the best treatments on plant growth as well as P fractions in the soil. The dry weights of shoot and root of phaseolus plants grown on noncalcareous sandy soil were higher than those grown on the calcareous one. The highest values of P concentration in shoot and root were found for (S.P+H.A) treatment in both soils and effects of other treatments were significantly greater than (S.P) treatment for shoot and root of phaseolus plant.

P sequential extraction showed that the highest significant Ca-P and OXD-P fractions were found for S.P treatments to the studied soils. The highest significant Org-P values were 24.8% 26.2% for rhizosphere and non-rhizosphere zone, respectively S.P + H.A, while the highest significant Org-P fraction in non-cultivated calcareous soil was 24.4% for H.A treatment and CaCO₃ has a series of fixation reactions occur that gradually decrease P solubility and eventually availability to plants. Addition of organic matter (used as H.A) showed significant positive effect, while CaCO₃ and / or high effects showed significant negative when applied combinations with fertilizers to sandy soils. However. bentonite addition resulted slight effect.

Key words: Humic Acid, Bentonite, CaCO₃, pH, Rock phosphate, Rhizosphere, Split medium technique, Bean plants and fractionation of P.

ACKNOWLEDGMENT

Praise and thanks are due to **ALLAH**, the most merciful for directing me to the right way.

Special thanks to **Dr. Abdelmonem Mohamed Elgala,** professor of Soil Science and **Dr. Mohamed Aly Osman Elsharawy** professor of Soil Science. Faculty of Agriculture, Ain Shams University, for their supervision, suggesting the problem, fruitful discussion during this work, support, reviewing the manuscript and introducing all required facilities to complete this work.

I am especially indebted to **Dr. Mohamed Abd-El Fattah Eid,** Professor of Soils Science, Faculty of Agriculture, Ain Shams University, for his supervision, encouragement, continuous help, advice and sincere guidance to complete this work.

Thanks to **all staff members** of Soil Science Department, Faculty of Agriculture, Ain Shams University and especial thanks to **Dr**. **Shaimaa Yahie Oraby.** Lecturer of Soil Science, Ain Shams University. for her support and help through this work.

A private thanks to **my parents**, **my husband**, **my brother** and **sisters** to their support, advice and sincere guidance to accomplish this work.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1.1. Phosphorus	3
2.1.2. Sources of phosphorus in soil	4
2.1.3. Forms of available P in soil	5
2.1.4. Fractionation of phosphorus	6
2.2. Some factors affecting on solubilization of phosphorus.	9
2.2.1. CaCO ₃	9
2.2.2. pH	10
2.2.3. Bentonite	12
2.2.4. Organic matter (Humic acids)	13
2.3.1. Rhizosphere	19
2.3.2. Phosphorus in Rhizosphere	22
2.4. Split technique.	23
3. MATERIALS AND METHODS.	25
3.1. The materials	25
3.1.1. Soil sampling	25
3.1.2. Organic matter and clay mineral	25
3.2. The experiments	28
3.2.1. Incubation experiment	28
3.2.1.1. Analysis	28
3.2.1.2. Statistical analysis	28
3.2.2. Split medium technique experiment	28
3.2.2.1. Analytical methods	31
3.2.2.2. Statistical analysis.	31
3.2.3. Pots experiment	31
3.2.3.1. Sampling and analytical methods	32

	Page
3.2.3.2. Statistical analysis	
3.2. Methods of extraction and chemical analysis	33
4. RESULTS AND DISCUTION	35
4.1. Incubation experiment	35
4.2. Split medium technique experiment	44
4.3. Pots experiment	55
4.3.1. Plant dry weight	55
4.3.2. P concentration and total uptake	58
4.3.3. pH of the cultivated soil	63
4.3.4. Phosphorus distribution in soil fractions	68
5. SUMMARY	82
6. REFERENCES	92
7. ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	Some physical and chemical characteristics of the investigated soils.	26
2	Some physical and chemical properties of the used humic acid (HA), bentonite and rock phosphate (RP).	27
3	Analysis of variance and multiple range test of chemically available P extracted from the incubated sand treated with different levels of CaCO ₃ or pH.	37
4	Analysis of variance and multiple range test of chemically available P extracted from the incubated sand treated with different levels of	41
5	humic acid (H.A) or bentonite. Effect of CaCO ₃ , H.A and bentonite on the solubilization of P in solution media of bean root.	45
6	Effect of CaCO ₃ , pH, H.A and bentonite on dry weight of bean plants (g).	47
7	Effect of CaCO ₃ , H.A and bentonite on concentration of P in bean plants.	50
8	Effect of CaCO ₃ , pH, H.A and bentonite on pH of bean root growth medium solution	53
9	Effect of different treatments on dry weight of phaseolus plant grown on noncalcareous sandy soil (g.plant ⁻¹)	56
10	Effect of different treatments on dry weight of phaseolus plant grown on calcareous sandy soil (g.plant ⁻¹).	57
11	Effect of different treatments on P content of phaseolus plant grown on noncalcareous sandy soil.	59

Table No.		Page
12	Effect of different treatments on P content of phaseolus plant grown on calcareous sandy soil.	61
13	Effect of different treatments application on pH of noncalcareous sandy soil	65
14	Effect of different treatments application on pH of calcareous sandy soil.	66
15	Effect of different treatments on SOLU, EXE and Ca-P phosphorus fractions in non-calcareous sandy soil.	69
16	Effect of different treatments on ORG, OXD and total phosphorus fractions in noncalcareous sandy soil.	70
17	Effect of different treatments on SOLU, EXE and Ca-P phosphorus fractions in calcareous soil.	76
18	Effect of different treatments on ORG, OXD and total phosphorus fractions in calcareous soil.	77

LIST OF FIGURES

Fig. No.		Page
1	Schematic of the split medium technique.	24, 29
2	Chemically available P extracted from the	38
	incubated sand as affected by different levels of	
	CaCO ₃ and pH.	
3	Chemically available P extracted from the	42
	incubated sand as affected by different levels of	
	H.A and bentonite.	
4	Effect of CaCO ₃ , H.A and bentonite on the	46
	solubilization of P in solution of grown bean	
	root.	
5	Effect of CaCO ₃ , pH, H.A and bentonite on dry	48
	weight of bean plant.	
6	Effect of CaCO ₃ , H.A and bentonite on	49
	concentration of P in bean plant.	
7	Effect of CaCO ₃ , pH, H.A and bentonite on pH	54
	of bean root growth medium solution.	
8	Effect of different treatments on dry weight of	56
	phaseolus plant grown on noncalcareous sandy	
	soil (g.plant ⁻¹).	
9	Effect of different treatments on dry weight of	57
	phaseolus plant grown on calcareous sandy	
	soil (g.plant ⁻¹)	
10	Concentration and total uptake of P of phaseolus	60
	plant grown on noncalcareous sandy soil.	
11	Concentration and total uptake of P of	62
	phaseolus plant grown on calcareous sandy	
	soil.	
12	Effect of different treatments application on pH	67
	of noncalcareous and calcareous sandy soils.	
13	Phosphorus distribution among the different	71
	fractions in rhizosphere zone for noncalcareous	
	soil.	
14	Phosphorus distribution among the different	71

Fig. No.		Page
	fractions in nonrhizosphere zone for	
	noncalcareous soil.	
15	Phosphorus distribution among the different	72
	fractions in noncultivated non calcareous	
	soil.	
16	Phosphorus distribution percentage of total P	72
	among the different fractions in rhizosphere	
	zone for noncalcareous soil.	
17	Phosphorus distribution percentage of total P	73
	among the different fractions in non	
	rhizosphere zone for noncalcareous soil.	
18	Phosphorus distribution percentage of total P	73
	among the different fractions in	
	noncultivated noncalcareous soil.	
19	Phosphorus distribution among the different	78
	fractions in rhizosphere zone for calcareous	
	soil.	
20	Phosphorus distribution among the different	78
	fractions in non rhizosphere zone for	
	calcareous soil.	
21	Phosphorus distribution among the different	78
	fractions in noncultivated calcareous soil.	
22	Phosphorus distribution percentage of total P	79
	among the different fractions in rhizosphere	
	zone for calcareous soil.	
23	Phosphorus distribution percentage of total P	79
	among the different fractions in non	
	rhizosphere zone for calcareous soil.	
24	Phosphorus distribution percentage of total P	80
	among the different fractions in	
	noncultivated calcareous soil.	

INTRODUCTION

The mobility of phosphorus (P) in the shallow subsurface is a matter of critical importance and considerable complexity. Its importance stems from the fact that P, an essential nutrient for all plant and animal life.

Agricultural fertilizers and other soil amendments, such as mineral P fertilizers and animal manure, provide P that is readily available to plants. The short-term availability of P to crops is strongly influenced by biochemical processes that affect organic matter, while its long-term status is generally determined by geochemical transformations.

Hopkins and Ellsworth (2005) reported that. Calcareous soil is defined as having the presence of significant quantities of free excess lime (calcium or magnesium carbonate). Lime dissolves in neutral to acid soil pH, but does not readily dissolve in alkaline soil and, instead, serves as a sink for surface adsorbed calcium phosphate precipitation.

The bioavailability of P is strongly tied to soil pH. The formation of iron and aluminum phosphate minerals results in the reduced solubility of P in strongly acidic soil, P solubility improving as pH approaches nearly neutral. This maximum solubility and plant availability of P at pH 6.5 declines again as the pH increases into the alkaline range.

Humic acid is a commercial product of organic fertilizers containing most elements that improve soil fertility and increase nutrients availability, thus enhances plant growth and yield as well as decreases the harmful effect of stresses (**Doran et al., 2003**). In addition, humic acid (HA) from wheat straw leachate can inhibit the formation of insoluble Ca phosphates and thus may enhance P bioavailability (**Grossl and Inskeep**,

1991). However, increasing phosphorus recovery is the effect of HA on the availability of P and micronutrients has been given particular attention because of observed increases in uptake rates of these nutrients following application of humic acid (Satisha and Devarajan, 2005).

Thus, the aim of this work is to evaluate the effect of some factors such as CaCO₃, pH, bintonite, organic mater (humic acid) on P solubility and availability in the rizosphere zone as well as increasing the efficiency of such nutrient in calcareous and noncalcareous soils which is reflected on the growth of plant.