"Stress distribution of screw retained hybrid abutment crowns with different abutment connections"

A thesis submitted for partial fulfillment of the requirements for the PhD of Science in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

By

Mohamed Samy Abd El Samie Ibrahim Zaky

BDS Faculty of Dentistry, Ain Shams University (2010)

Faculty of dentistry

Ain shams university

2020

Supervisors:

Prof. Dr. Tarek Salah El-Din Mohamed Morsi

Professor and head of Fixed Prosthodontics department, Ain Shams University

Dr. Ayman Galal El Dimery

Lecturer in Fixed Prosthodontics department, Ain Shams
University

Dr. Soha Osama Nabih

Lecturer in Fixed Prosthodontics department, Ain Shams
University

Acknowledgment

No words can express my deepest thanks and sincere gratitude as well as appreciation to **Dr. Tarek Salah Morsi**, professor, mentor and head of the fixed prosthodontics department, Faculty of Dentistry, Ain Shams University. From finding an appropriate subject in the beginning to the process of writing the thesis, his valuable advice, devoted effort and unique cooperation, will always be deeply remembered. This work could have never been completed without his extraordinary assistance and sincere guidance.

The good advice, support and friendship of **Dr. Soha Osama**, lecturer at fixed prosthodontics department, Faculty of Dentistry, Ain Shams University has been invaluable on both an academic and a personal level, for which I am extremely grateful. her devoted effort, close supervision and remarkable help are highly appreciated.

Last, but not least, deepest thanks to my dear professors, colleagues and staff members of Fixed prosthodontics Department, Faculty of Dentistry, Ain Shams University for their great support, encouragement and cooperation.

Dedication

This work is dedicated to My dear family.

Without them, I will not be standing where I am today

Contents

LIST OF FIGURES]
LIST OF TABLES	VIII
INTRODUCTION	1
REVIEW OF LITERATURE	3
STUDY OBJECTIVES	28
MATERIALS AND METHODS	29
STATISTICAL ANALYSIS	73
RESULTS	75
DISCUSSION	125
SUMMARY AND CONCLUSION	134
REFERENCES	29
ARABIC SUMMARY	

List of Figures

Figure 1 IPS E.max CAD block30
Figure 2 Katana UTML zirconia blank31
Figure 3 Vita Enamic block
Figure 4 Monobond plus
Figure 5 Multilink hybrid abutment resin cement
Figure 6 Implants used in the study; Internal hexagon connection (top
left), Conical connection (top right), STL for internal hex connection
implant, STL for conical connection implant36
Figure 7 merged scan body and implant body in 3matic software39
Figure 8 New file was opened, selecting upper left first premolar as the
target tooth40
Figure 9 Selecting anatomical crown as target design, selecting implant-
based restoration, and adjusting cement gap to 60µm40
Figure 10 Importing the implant STL file to design software with the
scan body attached to it
Figure 11 After selecting the implant manufacturer from the library,
selecting a point as indicated will automatically align the virtual
marker (orange) with the scan body attached to it42
Figure 12 Virtual implant analogue with the Ti base attached to it43
Figure 13: loading a premolar tooth from the teeth library in the design
software, positioning, resizing to the required dimensions43
Figure 14 Crown with the desired dimensions (lateral view)44
Figure 15 Crown with the desired dimensions (occlusal view)44
Figure 16 Position of screw channel
Figure 17 finalizing screw channel hole design45

Figure 18 Merged crown design46
Figure 19 New file for conical connection crown
Figure 20 Parameters as the hex connection crown design
Figure 21 Importing the hex crown design as a preoperative model for
correct positioning of the new crown
Figure 22 Positioning the new crown according to the position of the
initial design
Figure 23 Adapting the crown to the preop imported for identical design
of the two crowns50
Figure 24 Finalizing design
Figure 25 Bone structure longitudinal section
Figure 26 STLs of different components of implant system; cement layer
(top left), Ti base (top middle), implant body (top right), screw
(bottom left), all implant components (bottom right)53
Figure 27 Effect of remeshing, original STL of bone (left), remeshing of
bone (right)53
Figure 28 effect of remeshing on Ti base, original (left), after remeshing
(right)54
Figure 29 Creating volume mesh, Whole components (left), Close up
(right)55
Figure 30 Assigning the base of cortical bone to be fixed in all directions
56
Figure 31 Nodes (pink dots) used for central fossa load; Close up view
(left), general view (right)57
Figure 32 Nodes (pink dots) used for oblique load; Close up view (left),
general view (right)58
Figure 33 Vita Enamic finishing and polishing kit61

Figure 34 Firm Sponge cut into desired dimensions
Figure 35 Additional Silicone mold
Figure 36 Implant fixed with cyanoacrylate cement
Figure 37 Technovit 400064
Figure 38 Mold around implant65
Figure 39 First pour of bone analogue65
Figure 40 Strain gauge tip is fixed in place and second mix is poured65
Figure 41 strain gauge tips fixed on surface of bone analogue67
Figure 42 Tips attached to buccal, palatal and apical areas of bone
substitute67
Figure 43 Another view of bone substitute
Figure 44 Seating pressure for bonding procedure; Initial insertion (left),
seating load (right)
Figure 45 Complete light curing for the resin cement70
Figure 46 Axial load applied to central fossa of hybrid abutment crown 70
Figure 47 Special made attachment for 30 oblique loading72
Figure 48 Oblique load on the palatal slope of buccal cusp72
Figure 49 Color coded bar for Von Mises stresses analysis75
Figure 50 FEA analysis of IPS e.max CAD conical connection crown
with axial loading. (A) overall von mises stresses on the hybrid
abutment crown, (B)Stresses on the cement layer, (C) Stresses on the
Ti base, (D) stresses on the screw, (E) Overall stresses on bone, (F)
overall stresses on the implant fixture, (G) Cross section of stresses
on the cancellous bone, (H) overall stresses on the hybrid abutment
crown and all implant components, (I) Cross section of stresses on
compact bone77

Figure 51 FEA analysis of Katana UTML zirconia conical connection
crown with axial loading. (A) overall von mises stresses on the hybrid
abutment crown, (B)Stresses on the cement layer, (C) Stresses on the
Ti base, (D) stresses on the screw, (E) Overall stresses on bone, (F)
overall stresses on the implant fixture, (G) Cross section of stresses
on the cancellous bone, (H) overall stresses on the hybrid abutment
crown and all implant components, (I) Cross section of stresses on
compact bone79
Figure 52 FEA analysis of Vita Enamic conical connection crown with
axial loading. (A) overall von mises stresses on the hybrid abutment
crown, (B)Stresses on the cement layer, (C) Stresses on the Ti base,
(D) stresses on the screw, (E) Overall stresses on bone , (F) overall
stresses on the implant fixture, (G) Cross section of stresses on the
cancellous bone, (H) overall stresses on the hybrid abutment crown
and all implant components, (I) Cross section of stresses on compact
bone
Figure 53 FEA analysis of IPS e.max CAD conical connection crown
with oblique loading. (A) overall von mises stresses on the hybrid
abutment crown, (B)Stresses on the cement layer, (C) Stresses on the
Ti base, (D) stresses on the screw, (E) Overall stresses on bone, (F)
overall stresses on the implant fixture, (G) Cross section of stresses
on the cancellous bone, (H) overall stresses on the hybrid abutment
crown and all implant components, (I) Cross section of stresses on
compact bone83
Figure 54 FEA analysis of Katana UTML zirconia conical connection
crown with oblique loading. (A) overall von mises stresses on the
hybrid abutment crown, (B)Stresses on the cement layer, (C) Stresses

on the T ₁ base, (D) stresses on the screw, (E) Overall stresses on
bone, (F) overall stresses on the implant fixture, (G) Cross section of
stresses on the cancellous bone, (H) overall stresses on the hybrid
abutment crown and all implant components, (I) Cross section of
stresses on compact bone86
Figure 55 FEA analysis of Katana UTML zirconia conical connection
crown with oblique loading. (A) overall von mises stresses on the
hybrid abutment crown, (B)Stresses on the cement layer, (C) Stresses
on the Ti base, (D) stresses on the screw, (E) Overall stresses on
bone, (F) overall stresses on the implant fixture, (G) Cross section of
stresses on the cancellous bone, (H) overall stresses on the hybrid
abutment crown and all implant components, (I) Cross section of
stresses on compact bone90
Figure 56 FEA analysis of IPS e.max CAD internal hex crown with axial
loading. (A) overall von mises stresses on the hybrid abutment crown,
(B)Stresses on the cement layer, (C) Stresses on the Ti base, (D)
stresses on the screw, (E) Overall stresses on bone, (F) overall
stresses on the implant fixture, (G) Cross section of stresses on the
cancellous bone, (H) overall stresses on the hybrid abutment crown
and all implant components, (I) Cross section of stresses on compact
bone93
Figure 57 FEA analysis of Katana UTML zirconia internal hex crown
with axial loading. (A) overall von mises stresses on the hybrid
abutment crown, (B)Stresses on the cement layer, (C) Stresses on the
Ti base, (D) stresses on the screw, (E) Overall stresses on bone, (F)
overall stresses on the implant fixture, (G) Cross section of stresses
on the cancellous bone. (H) overall stresses on the hybrid abutment

crown and all implant components, (I) Cross section of stresses on
compact bone96
Figure 58 FEA analysis of Vita Enamic internal hex crown with axial
loading. (A) overall von mises stresses on the hybrid abutment crown,
(B)Stresses on the cement layer, (C) Stresses on the Ti base, (D)
stresses on the screw, (E) Overall stresses on bone, (F) overall
stresses on the implant fixture, (G) Cross section of stresses on the
cancellous bone, (H) overall stresses on the hybrid abutment crown
and all implant components, (I) Cross section of stresses on compact
bone99
Figure 59 FEA analysis of IPS e.max CAD internal hex crown with
oblique loading. (A) overall von mises stresses on the hybrid
abutment crown, (B)Stresses on the cement layer, (C) Stresses on the
Ti base, (D) stresses on the screw, (E) Overall stresses on bone, (F)
overall stresses on the implant fixture, (G) Cross section of stresses
on the cancellous bone, (H) overall stresses on the hybrid abutment
crown and all implant components, (I) Cross section of stresses on
compact bone
Figure 60 FEA analysis of Katana UTML zirconia internal hex crown
with oblique loading. (A) overall von mises stresses on the hybrid
abutment crown, (B)Stresses on the cement layer, (C) Stresses on the
Ti base, (D) stresses on the screw, (E) Overall stresses on bone, (F)
overall stresses on the implant fixture, (G) Cross section of stresses
on the cancellous bone, (H) overall stresses on the hybrid abutment
crown and all implant components, (I) Cross section of stresses on
compact bone106

Figure 61 FEA analysis of Vita Enamic internal hex crown with oblique
loading. (A) overall von mises stresses on the hybrid abutment crown,
(B)Stresses on the cement layer, (C) Stresses on the Ti base, (D)
stresses on the screw, (E) Overall stresses on bone, (F) overall
stresses on the implant fixture, (G) Cross section of stresses on the
cancellous bone, (H) overall stresses on the hybrid abutment crown
and all implant components, (I) Cross section of stresses on compact
bone
Figure 62 Bar chart showing values of von Mises stress (Mpa) in samples
with internal hex connection
Figure 63 Bar chart showing values of von Mises stress (Mpa) in
samples with conical taper connection112
Figure 64 Box plot showing stress ($\mu m/m$) in IPS E.max CAD samples
Figure 65 Box plot showing stress ($\mu\text{m/m}$) in cubic Zirconia samples .114
Figure 66 Box plot showing stress ($\mu\text{m/m}$) in Vita Enamic samples114
Figure 67 Bar chart showing average stress ($\mu m/m$) for different variables
(A)123
Figure 68 Bar chart showing average stress ($\mu m/m$) for different variables
(B)

List of tables

able 1: Standard composition of IPS e.max CAD Error! Bookmark not
efined.
able 2 Chemical composition of Vita Enamic Error! Bookmark not defined.
able 3 Number of nodes and elements Error! Bookmark not defined.
able 4 Elastic modulus and Poisson ratio of different materials Error!
ookmark not defined.
able 5 recommended crystallization and glazing cycle for IPS E.max CAD
estorations Error! Bookmark not defined.
able 6 Sintering instructions for UTML Zirconia restorations Error! Bookmark
ot defined.
able 7 Values of von Mises stress (Mpa) Error! Bookmark not defined.
able 8 Descriptive statistics of stress (µm/m) Error! Bookmark not defined.
able 9 Effect of different variables and their interactions on stress (μm/m)
Error! Bookmark not defined.
able 10 Mean ± standard deviation (SD) of stress (μm/m) for different
ariables Error! Bookmark not defined

Introduction

An implant abutment is an intermediate part between the implant and the restoration and is retained to the implant by a locking taper and a screw. Implant abutments can usually be separated from the implant, but in some cases, they may form part of the implant itself.

Implant abutments effectively help form the restorative part of the implant treatment. The retention, stability, support, and ideal position of the final restoration are provided by the abutment.

Implant abutments are connected to the implant fixture through several types of connections; external connections and internal connections. The most commonly used in internal connections are the internal hexagon (hex) and conical connections. Some variations arise from the conical connection according to the degree of conical taper such as the pure conical connection known as the Morse taper and those with less taper degrees and need screw retention.

Implant abutments are generally either prefabricated by implant manufacturer companies or custom made in a dental laboratory ⁽¹⁾. A prefabricated abutment is machine-made; it may be picked directly by an implant or fixture level impression or it may be directly adapted to an existing platform and pressed as a conventional crown. In order to fabricate a custom abutment, an implant or fixture level impression is taken of the implant platform with the help of an impression coping.

Another recently introduced concept type of abutments are the hybrid abutment crowns in which the custom abutment is developed as a

final restoration in function with an embedded screw channel to access the screw that hold the hybrid abutment crown in place.

Many materials are used to fabricate the hybrid abutment crowns such as lithium disilicate, different types of zirconia and hybrid ceramics that incorporate resin into the ceramic structure, but little is known about the stresses that are transmitted through different materials to the implant body and subsequently, the surrounding bone.

The most important reason to investigate the stress distribution in abutments and micro strain in crestal bone around implants is the possibility to provide enough information for implant planning, optimizing the implant installation in areas with different bone characteristics ⁽²⁾. Despite this, masticatory overload is one of the primary factors for fractures and dental implant loss ⁽³⁾. During the prosthetic phase of implant treatment, the choice between different materials with different elastic modulus can generate different stress and strain values in the implant and peri-implant bone ⁽⁴⁻⁶⁾.