

Ain Shams University Faculty of Science Biochemistry Department

Detection of Hepatitis C Virus genotype-4 using nucleic acid aptamers

A thesis
Submitted as a partial fulfillment for requirements of the master degree of Science in Biochemistry

By

Abdullah Elsayed Mohamed Gouda

B.Sc. (Biochemistry/chemistry, 2005) Cairo University

Under Supervision of

Dr. Amina Mohamed Medhat

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Mohamed Abbas Shemis

Professor and Head of Biochemistry and Molecular biology Department Head of Nanotechnology Unit Theodor Bilharz Research Institute

Dr. Eman Mohamed Saleh

Assistant professor of Biochemistry
Biochemistry Department
Faculty of Science
Ain Shams University

To whom I owed my deepest graditude

My family

My father & mother

My brothers & sisters

My wife

My lovely daughter

"Arwa"

&

My sincere friends

Acknowledgment

Acknowledgment

"First and foremost, thanks to Allah, the beneficent and gracious"

At the beginning, I would like to express my sincere thanks and gratitude to **Prof. Dr. Amina Mohamed Medhat**, Professor of Biochemistry, Faculty of Science, Ain Shams University, for being so generous with her knowledge and being so supportive in all aspects of my work. I am so grateful to her for sincere efforts and step-by-step guidance through the entire study. I learned a lot from her constructive and precious remarks during my work and writing this thesis. To her, I cannot find words to express my gratefulness and thanks.

Words cannot explicit my sincerest thanks and appreciation to **Prof. Dr.**Mohamed Abbas Shemis, Professor and Head of Biochemistry and Molecular Biology Department and Head of Nanotechnology Unit, Theodor Bilharz Research Institute, for suggesting the research point, setting up the plan of the work and for his enthusiastic kind supervision, generous and unlimited remarkable suggestions that motivated me a lot to do my best to achieve the right goal and finish up this thesis. I owe my deepest thanks for his precious comments, expert advice and constructive assistance during writing of this thesis. I am very proud of being one of his students and will never forget his kindness and generosity.

I would like to declare my great cordial thanks and appreciation to **Dr. Eman Mohamed Saleh**, Assistant Professor of Biochemistry, Faculty of Science, Ain Shams University, for her scientific meticulous supervision, kind constructive assistance and support, valuable comments and remarks

that helped me to accomplish this work. To her, I cannot find words to express my gratefulness and thanks.

I wish also to thank **Prof. Dr. Hanan Abdelmoniem Omar**, Professor of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, for her kindly research advice and assistance in primer design.

Also, I would like to express my sincere thanks to **Dr. Hend Okasha Ahmed**, Researcher of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, for her effective encouragement, kind constructive assistance and support that helped me to accomplish this work. Also, for solving the daily problems faced me during my experimental study and for her extensive efforts and noteworthy comments during writing of this thesis.

This work was supported by the ASRT-project no. EGY/FR10-06. The principal investigator **Prof. Dr. Mohamed Abbas Shemis.**

Special thanks to all members of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, for their continuous emotional encouragement and support throughout the whole work.

Abdullah Gouda

2019

Contents

Subject	Page
Abstract	I
List of Abbreviations	III
List of Tables	VIII
List of Figures	IX
Introduction	1
Aim of the work	6
1. Review of Literature	7
1.1. Hepatitis	7
1.1.1. Hepatitis C Virus	7
1.1.1.1 HCV routes of transmission	8
1.1.1.2. HCV epidemology	10
1.1.1.3. HCV structure and virology	11
1.1.1.4. HCV life cycle and replication	13
1.1.1.5. HCV genotypes	16
1.2. HCV treatment	17
1.2.1. Interferons	18
1.2.2. Ribavirin	18
1.2.3. Direct acting antivirals	19
1.3. HCV diagnosis	22
1.3.1. Serological assays	22
1.3.1.1. Enzyme-Linked Immunosorbent assay (ELISA)	22
1.3.1.2. Recombinant immunoblot assay (RIBA)	23
1.3.1.3. Rapid test	25
1.3.1.4. Core antigen assay	26

Contents

1.3.1.5. Aptamer based assays	27
1.3.1.5.1. Enzyme linked oligonucleotide assay	29
1.3.1.5.2. Aptamer-polymer conjugated assay	32
1.3.1.5.3. Aptamer metallic nanoparticles conjugate	33
assays	
1.3.2. Molecular diagnostic assays	35
1.3.2.1. Qualitative assays	36
1.3.2.2. Quantitive assays	37
1.3.2.3. HCV genotyping	39
1.4. Recombinant protein expression systems	40
1.4.1. <i>E.coli</i> expression system	43
1.4.2. Factors controlling expression in <i>E.coli</i>	43
1.4.2.1. Expression vector and plasmid copy number	43
1.4.2.2. Promoters	46
1.4.2.3. Codon usage and protein degradation	48
1.5. Inclusion bodies purification and	
solubilization	
1.6. <i>In vitro</i> protein folding	50
1.6.1. Dialysis	51
1.6.2. slow dilution	52
1.6.3. Rapid dilution	53
1.6.4. Pulse renaturation	53
1.6.5. Diafiltration	54
1.6.6. Chromatography	55
1.7. Protein purification using chromatography	56
1.7.1. Ion exchange chromatography	56
2. Subjects& methods	59
2.1. Subjects	59
2.2. Materials	60

-

|--|

2.2.1. Equipments and supplies	60
2.2.2. Synthetic gene design	62
2.2.3. Primer design	64
2.3. Methods	65
2.3.1. HCV G4 Core gene amplification using	65
synthetic gene (core gene/pMAT vector)	
2.3.1.1. Polymerase chain reaction (PCR)	65
2.3.1.2. DNA gel electrophoresis	67
2.3.2. HCV Core protein expression	69
2.3.2.1. Restriction endonuclease digestion	69
2.3.2.2. DNA purification from agarose gel	70
2.3.2.3. Ligation of HCV Core fragment to pET15b	73
expression vector	
2.3.2.4. Preparation of chemically competent <i>E coli</i>	75
using calcium chloride method	
2.3.2.5. Transformation of chemically competent E	77
<i>coli</i> (TOP-10) 2.3.2.6. Plasmid DNA preparation	79
2.3.2.6.1. Boiling method (mini-prep)	79
• • • • • • • • • • • • • • • • • • • •	82
2.3.2.6.2. Large scale DNA preparation	
2.3.2.7. Glycerol stock preparation	86
2.3.2.8. Expression in pET15b vector Rosetta DE3	87
2.3.2.8.1. Transformation of Rosetta DE3	87
2.3.2.8.2. Production of recombinant protein	88
2.3.2.8.3. Sodium dodecyl sulphate polyacrylamide	89
gel electrophoresis (SDS-PAGE)	0.1
2.3.2.9. Inclusion bodies purification	91
2.3.2.9.1. Inclusion bodies solubilization	93
2.3.2.9.2. Protein refolding and diafiltration	94
2.3.2.9.3. Exchanging buffer by diafiltration	96

ntents
ni

2.3.2.9.4. Purification of HCV Core protein using cation-exchange chromatography	97
2.3.2.10. Indirect ELISA	100
2.3.3. HCV Core aptamer colorimetric assay	105
2.3.3.1. Pegylation of the nucleic acid aptamer	105
2.3.3.2. Preparation of aptamer -AuNPs probe	107
2.3.3.3. Optimization of the aptamer-AuNPs probe interaction with HCV Core antigen	109
2.3.3.4. Validation of the developed assays and comparison with commercial ELISA kit	111
2.3.3.5. Statistical analysis	112
3. Results	113
3.1. HCV G4 Core gene amplification using	113
synthetic gene (core gene/pMAT vector)	
3.1.1. Optimization of PCR and DNA gel	113
electrophoresis	114
3.2. HCV Core protein expression	114
3.2.1. Restriction endonuclease digestion	
3.2.2. Ligation of HCV Core fragment to pET15b expression vector	115
3.2.2.1. Transformation of chemically competent <i>E. coli</i> (TOP-10)	116
3.2.3. Plasmid DNA preparation	117
3.2.3.1. Boiling method (mini-prep)	117
3.2.3.2. Large scale DNA preparation	118
3.2.3.3. Analysis of transformed clones using PCR	119
3.3. Expression in pET15b vector Rosetta DE3	120
3.3.1. Transformation of Rosetta DE3	120
3.3.2. Production of recombinant protein	121
3.4. Purification of recombinant HCV Core antigen	122
by liquid chromatography	

	Contents
3.5. Pegylation of ssDNA and HCV Core aptamer	123
3.6. Immunodetection analysis of recombinant HCV	125
Core antigen	
4. Discussion	133
5. Summary	157
6. References	160

Abstract

Egypt has the highest prevalence of Hepatitis C Virus (HCV) infection with 92.5% of patients infected with genotype-4. This study aimed to clone and express the Core gene from HCV genotype-4 and used the purified proteins to develop a highly sensitive, specific and cost-effective diagnostic assay for detection of HCV infection. Using synthetic HCV genotype-4 Core gene and pET15b as E. coli expression vector, the HCV Core protein (MW 17 kDa) was expressed in the form of inclusion bodies (IBs). The expressed protein was purified and refolded in vitro using rapid dilution method. The recombinant Core protein was purified successfully using weak cation exchange liquid chromatography. The immunogenicity of the purified protein was tested using 129 archived serum samples by ELISA and it was also used as a reference standard for detection of HCV Core antigen using the HCV Core aptamer colorimetric assay. Results showed that, the HCV Core aptamer assay had 100% sensitivity and specificity where as the in-house anti-HCV Core assay had ~98.55% sensitivity and ~98.33% specificity as judged by qRT-PCR. In conclusion, the sensitivity, specificity and correlation of the developed HCV Core aptamer colorimetric assay to qRT-PCR are higher than those for the commercially available ELISA assays, and can be used as a screening and quantification assay for detecting HCV infection.

Keywords: HCV, Core protein, inclusion bodies, refolding, ELISA, aptamer.

List of abbreviations

Abbreviated	Full name
name	
aa	Amino acid
Abs	Antibodies
Ags	Antigens
AuNPs	Gold nanoparticles
ALT	Alanine aminotransferase
CDC	Centers for Disease Control and
	Prevention
cDNA	Complementary DNA
СНС	Chronic hepatitis C
CIA	Chemiluminescence immunoassays
DAAs	Direct-acting antivirals
DTT	Dithiothreitol
EDAC	1-Ethyl-3-(3-dimethyl-aminopropyl)
	carbodiimide
EDTA	Ethylenediamine tetraacetic acid
E1	HCV envelop1
E2	HCV envelop2
ELISA	Enzyme Linked Immunosorbent assay

ELONA	Enzyme linked oligonucleotides assay
ER	Endoplasmic reticlume
F	Forward
FRET	Fluorescence resonance energy transfer
G	Genotype
HBV	Hepatitis B Virus
HCC	Hepatocellular Carcinoma
HCV	Hepatitis C Virus
HCV coreAg	HCV Core antigen
HIV	Human Immunodeficiency Virus
HRP	Horse raddish peroxidase
HTAs	Host-targeted agents
IBs	Inclusion bodies
ICP-MS	Inductively Coupled Plasma-Mass
	Spectrometry
IDUs	Intravenous drug users
IEC	Ion exchange chromatography
IFN	Interferon
IMAC	Immobilized metal ion affinity
	chromatography
IPTG	Isopropyl β-D-1-thiogalactopyranoside

lac	lactose
LOD	Limit of detection
MCS	Multiple cloning sites
MNPs	Magnetic nanoparticles
MWCO	Molecular weight cut-off
NANBH	The non-A, non- B Hepatitis
NATs	Nucleic acid amplification techniques
NCR	Noncoding region
NHS	N-hydroxysuccinimide
Ni-NTA	Nickel-nitrilotriacetic acid coupled to a
agarose	cross- linked agarose resin
NS1-NS5	Nonstructure protein (1-5)
nts	Nucleotides
OD	Optical density
OPD	O-phenylenediamine dihydrochloride
Ori	Origin of replication
ORF	Open reading frame
PBS	Phosphate buffer saline
PCR	Polymerase chain reaction
PDA	Polydiacetylene
PDGF	Platelet derived growth factor