

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Architecture Engineering

The Effect of the Operational phase of Construction on The Physical built Environment in Hospital Facilities

"Road-Mapping the Architectural Design Footsteps to Catalyse the Sense of Healing and Collaborate Operators Vision In Hospital Based-Emergency Departments"

A Thesis submitted in partial fulfilment of the requirements of the degree of Master of Science In Architectural Engineering

By

Bassant Amin Abdel-Wahab

Bachelor of Science In Architectural Engineering Faculty of Engineering, Benha University, 2011

Supervised By

Prof. Akram Farouk, Professor of Architecture, faculty of Engineering,

Ain Shams University, Cairo, Egypt

Prof. Mostafa Refat, Professor of Architecture, faculty of Engineering,

Ain Shams University, Cairo, Egypt

Cairo - (2020)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Architecture

The Effect of the Operational phase of Construction on The Physical built Environment in Hospital Facilities

By

Bassant Amin Abdel-Wahab

Bachelor of Science In Architectural Engineering Faculty of Engineering, Benha University, 2011

Examiners' Committee

Date: 26 DECEMBER 2019

Name and Affiliation	Signature
Prof. Ayman Othman	
Architecture , British University in Egypt BUE	
Prof. Ahmed Atef	
Architecture, Ain Shams University ASU	
Prof. Akram Farouk	
Architecture, Ain Shams University ASU	
Prof. Mostafa Refat	
Architecture, Ain Shams University ASU	

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Architectural Engineering Engineering, Faculty of Engineering, and Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Signature

Bassant Amin Abdel-Wahab Sorrour

Date: 26 DECEMBER 2019

Researcher Data

Name : Bassant Amin Abdel-Wahab Sorrour

Date of birth : 18 July, 1989

Place of birth : Heliopolis, Cairo.

Last academic degree : Bachelor of Science

Field of specialization : Architecture

University issued the degree : Benha University, Cairo.

Date of issued degree : 31 July, 2011

Current job : Senior Architect @Engineering Consultants

Group (ECG)

Thesis Summary

A Healthcare Facility (HF) is the most complex environment to design, build and operate. In the one, hand diverse stakeholders are coming along with integrated demands for satisfaction. On the other hand, International design standards tend to define the spatial requirements of HF only. Many details are left for HF operators to define resulting in a gap between Designers and Operators. Having Emergency Department (ED) as an Exemplar, trends like: Room Saturation, Patient Safety, Length of stay and caregivers satisfaction, tend to re-form the concept design of ED. The Research aims to fill in the gap between the designer's knowledge about the elements Physical Built Environment (PBE) and the stakeholders' demands for greater value in ED. Both Qualitative and Quantitative analysis are undertaken in this research.

The Quantitative survey for Post Occupancy Evaluation (POE) is used to define the measures of operational efficiency. Nationally case studies of Emergency department of Dar Al Fouad – Hospital Building (DAF, Giza, Egypt) and the new extension DAF (Cairo, Egypt), were selected. Internationally the post occupancy evaluation (POE) was reviewed for EDs in the United Kingdom National Healthcare services (NHS), utilizing this governmental development recognized POE system. The selection of case studies was based on application of local and global design standards of ED in Hospitals. These selections reflect the outcomes of POE on Healthcare architecture of ED to cover unseen points of on design standards regarding efficiency. Subsequently a Qualitative analysis is undertaken in order to generate a design check list capable to form a conceptual design of ED based on Post Occupancy Evaluation to have higher operational performance.

Mostly, a strong connection between a smooth flow among rates of admission and re-allocation of facilities were observed .The findings were extended to the developed design checklist that managed to cover the patient flow spine, and the same-handed room operational concepts impact on designing room's layout. Briefly, this research proposes a design checklist inducted from endusers experience to promote the physical built environment of an ED towards better performance. It was proven that design guidelines are not enough for performance guarantee. This research is limited to emergency preparedness as key measures of operational efficiency. Further investigations should proceed on design of adjacent departments to ED; Like Imaging, Intensive Care Units, etc... When applying the feedback from post occupancy stage to have a holistic approach to the Hospital Building as one Unit.

The Dissertation is composed of three Units:

Unit 1: Overviewing the Environment of Care: the unit explores the stakeholders of the healthcare industry their claims for the physical built environment and the reasons of choosing the Emergency department.

Unit 2: Identifying the measures of operational efficiency and methods architects have been using to figure out these measures. This section came closer to evidence based design methods and lean design methods to investigate the valid points in stakeholders' claims for changing design concept relatively.

Unit 3: Conducting a design lead checklist after analyzing case studies through diverse types of base plan comparisons to deduce the lessons to be learned from practical experience of currently operated hospital buildings.

Keywords: Emergency Department ED, Evidence Based Design EBD, Lean Design, Environment of Care EOC, Operational Efficiency, Physical Built Environment PBE, Healing Environment

Acknowledgment

First and foremost, I would like to primarily thank God for leading me to the path of Knowledge. I also wish to express my gratitude to people who have provided me with great support and advices. Without the support I gained from my Parents, Family, Professors, friends, and colleagues I would not have been able to reach this current stage of success.

I am indebted to many people who have continuous support which pushed forward this work to be successfully accomplished. In no means of exaggeration, words can't express my appreciation to my supervisors Dr. Akram Farouk, and Dr. Mostafa Refat for their intensive help and valuable advice, constant effort, and their continuous encouragement throughout the whole research.

I am speechless when trying to describe my gratitude for the inspiration and support I was provided by my mentor; Dr. Mervat Radwan. Worlds also remain insufficient in appreciating the quality unit in MoHP, Hospitals Engineering Units , physicians, Operators and even patients that if it wasn't for them I wouldn't have accomplishes my search. On that side I would like to thanks many professors of ASU Medical School; Dr.Samia Abdelhohsen, Dr.Mervat Abo el Maati, Dr. Sherif Wadee, and Dr.Hafez Ahmed along with a very long list that were all providing me with their valuable experience in Healthcare Facilities.

I would like to express my pride for belonging to ECG family in Architectural Department that motivates engineers to join academic high studies. Especially, I would like to thanks Eng. Mokhles Al-Tabba for his guidance for his support in both technical and personal aspects. Moreover, I would like to thank Eng. Mohamed Farouk for his tremendous support and encouragement. Many thanks as well should go to Eng. Sherif Younan, Eng. Sherif Amer, Eng. Mahmoud Moussa, Eng. Rania ElKateb, Eng. Omar Ahmed, Eng. Sameh Awaad, and Eng. Sara Magdy, along with many ECGians that would take me several pages to thank them per each person.

Acknowledgements as well should go to Eng. Yasser Salma, he introduced me to healthcare architecture through working in his team in ECG for two years. Yasser's great work in Healthcare Architecture has influenced my approach to problem solving, especially in my thesis work. I would also like to thank Eng. Safa Salem for her efforts, I have also benefited from her continuous advice, guidance, and comments.

Finally, I would like to thank my friend Eng. Rehab Khaled. Furthermore, I would like to thank Eng. Shaimaa Ahmed, Eng. Sara Moustafa, Eng. Omnia Mohamed, Eng. Marwa Shahine, Eng. Manal Amir, Eng. Aya Tarik, Eng. Weam Hamed, Eng. Alaa Khaled and Eng. Mai Mahmoud that have expressed to me their true best wishers and support whenever needed.

December 2019

List of Abbreviations

POE Post Occupancy Evaluation

PBE Physical Built Environment

EBD Evidence based Design

PF Patient Family

FGI Facility Guidelines institute

HBN Health Building Notes

HAAD Heath Authorities Abu Dhabi

EDMH&HF Egyptian design Measures for hospitals and healthcare Facilities

WHO World Health organization

ED Emergency Department

AHRQ Agency for Health Research and Quality

AHA American Hospital Association

HERD Health Environments Research and Design Journal

HAI Hospital Associated Infection

HIT Hospital Information Technology

IOM Institute of Medicine

IHI Institute for Healthcare Improvement

MOHP Ministry of Health and Population

CHD Center of Health care Design

BOO Build Own Operate

Table of Contents

TITLE	<u>PAGE</u>
TABLE OF CONTENTS	
LIST OF FIGURES	
LIST OF TAABLES	
ABSTRACT	
A. INTRODUCTION	i
A.1. Key Stakeholder of Healthcare Facilities	
A.2. Healthcare Facilities Settings and Characteristics	
A.3. Inpatient Hospitals	
A.4. Primary and Outpatient Care Services	
A.5.The Issuance of Design Guidelines in Countries Worldwide	
A.6.Framework of United States Healthcare Facilities	
A.7.The Framework of United Kingdom Healthcare Facilities	
A.8. the Framework of United Arab Emirates Healthcare Facilities xvi	
A.9.The Framework in Egyptian Healthcare Facilities	
B.RESEARCH PROBLEM DEFINITION	XX
C. JUSTIFICATION OF PROBLEM	xxi
C.1.Unseen Points in Design Guidelines Impacting the Operational Framework in Design	vvii
C.2.Unseen Points in Design Guidelines Impacting the Quality of Care	
C.3.Unseen Points Affecting the Hospital Business Case and Cost Feasibility Calculations	
D.RESEARCH GOALS	xxxiii
E.METHODOLOGY	xxxiv
F.SELECTION OF EXAMPLAR, EMERGENCY DEPARTMENT	xxxvii

UNIT 1-OVERVIEWING THE ENVIRONMENT OF CARE

1.1. THE EMERGENCY DEPARTMENT (ED) ENVIRONMENT	1
1.2. DEPARTMENTAL RELATIONSHIPS	3
1.3. EMERGENCY DEPARTMENT ED COMPONENTS	4
1.4. ED OPERATIONAL DESIGN IN FGI.	14
1.5. ED OPERATIONAL DESIGN IN HEALTH BUILDING NOTES HBN	26
UNIT 2- ARCHITECTURAL PRACTICE INTERACTION WITH END-U	SER
2.1. THE BALANCE IN STAKEHOLDERS CLAIMS FOR SATISFACTION	34
2.1.1 Organizational Culture and Change in Health Care 2.1.1 The Operational Workflow	
2.2. TRENDS AND CHALLENGES FACING THE DELIVERY OF HEALTHCARE	
HOSPITAL BUILDINGS WORLDWIDE	36
Trend One: Public Focus on Quality and Patient Safety	36
Trend Two: Healthcare Costs and Reimbursement	37
Trend Three: Aging Population and Caregiver Shortages	37
Trend Four: Health Information Technology	38
Trend Five: Genomics and Technology	39
Trend Six: Disaster Preparedness and Emergency Room Saturation	39
Trend Seven: Environmental Safety and Sustainability	39
2.3. UTILIZING POST OCCUPANCY EVALUATION POE FINDINGS TO ACHIEV	νE
EFFICIENCY	40
2.4. The Evidence Based Design Method	41
2.4.1. Evidence Based Design EBD Definitions	43
2.4.2. Analysis	44
2.4.3. Outcomes for Patients and Their Families	51
2.4.3. Outcomes for Staff	51
2.4.4. Claims of Reorganizing Topics and Subtopics	52
2.4.5. Key Findings in EBD	53
2.4.6 Evidence Recod Decign in ED. Case Studies	56

2.5. LEAN DESIGN METHOD	73
2.5.1 Literature Review: Value Engineering Methodology and Approach	73
2.5.2. Lean Method Principles	80
2.5.3. Lean In Front Design Phase/Planning Phase	81
2.5.4. Lean Design in Ed – Case Studies	85
2.6. EFFICIENCY MEASURES INDICATORS	91
2.6.1 Patient Measures "Achievement of Patient-Centered Care"	92
2.6.2. Staff and Caregivers Measures	92
2.6.3 Client and Operators Measures	95
UNIT 3- CONDUCTION OF DESIGN LEAD CHECKLIST	
3.1. CASE STUDIES	. 101
3.2. CASE STUDY 1: DANAT AL EMARAT, WOMEN'S AND CHILDREN'S HOSPITAL, AI	BU
DHABI, UAE	. 103
3.3. CASE STUDY 2: DAR AL FOUAD HOSPITALS, EGYPT	. 128
3.4. CASE STUDY 3: BRENT EMERGENCY CARE AND DIAGNOSTIC CENTRE AT	
CENTRAL MIDDLESEX HOSPITAL AND AN EXEMPLAR PLAN UK	. 158
3.5. CASE STUDY 4: AMERICAN INSTITUTE OF ARCHITECTS AIA PROTOTYPE "THE	
RIBBON" US	. 177
3.6. THE DESIGN LEAD CHECKLIST	. 187
3.6.1 Front-End Design Considerations	187
3.6.2. Ongoing (Fit –Out) Design Considerations	190
CONCLUSIONS	201
RECOMMENDATIONS	. 202
REFERENCES	
APPENDICES	

LIST OF FIGURES

INTRODUCTION:

<u>FIGURE</u>	<u>3E</u>
Figure a- 1: Health Care Efficiency Scores in 56 Economies	. iii
Figure a- 2: Relationship between the Five Main Categories of Hospital Component.	X
Figure a- 3: Disciplines Process in Establishing a Hospital in U.S	xiii
Figure a- 4: Facility Guidelines Institute Guidelines Timeline.	xiv
Figure a- 5: Process of Establishing a Hospital in U.K	XV
Figure a- 6: U.K. Facility Guidelines Timeline	xvi
Figure a- 7: Process of Establishing a Hospital for Operation in UAE	vii
Figure a- 8: Current Egypt MOHP Operating Structurexv	viii
Figure a- 9: Distribution of Hospitals in Egypt by Sector in 2015x	viii
Figure a- 10: Egypt Heath Care Expenditure Per Capita from 1995 to 2014	xix
Figure a- 11: Egypt heath care expenditure per capita compared to world countries	xix
Figure a- 12: Process of Establishing a Hospital for Operation in Egypt	XX
Figure a- 13: The Complexity Scale in HCF	xxi
Figure a- 14: Design Guidelines Operational Factors Level of Informationx	xvi
Figure a- 15: Users Feedback on Field Survey for Local Hospitals	vii
Figure a- 17: Design Guidelines Quality of Care Factors Level of Informationxx	xii
Figure a- 18: Whole Cost Lifecycle of a Healthcare Facilityxx	xiii
Figure a- 19: Health Key Indication in Egypt Healthcare Facilities Systemxx	xiv
Figure a- 20: Research Methodologyxx	xvi
Figure a- 21: Health Care Facilities Priorities of Finance	vii
UNIT 1:	
<u>FIGURE</u> PAG	<u>3E</u>
Figure 1. 1: Patients Journey through ED	2
Figure 1. 2: Results of 72 Points Comparative Study about Components of ED, Space Program and	1
Items Specifications	3
Figure 1. 3: Hospital Departmental Relationships with ED	3
Figure 1. 4: ED Basic Layout	
Figure 1. 5: Patients' Admission in U.S. Healthcare Facilities	
Figure 1. 6: Chair-Centered Patient (Vertical Patient) Required Space in ED for Treatment	16
Figure 1. 7: Alternate Configurations for a Low-Acuity Treatment Station	17

Figure 1. 8: 5 Low Acuity Stations Fitting 1.7m Width of 9.144 Structural Module	18
Figure 1. 10: Triage/Rapid Medical Evaluation RME/Fast-Track	20
Figure 1. 11: Types of Clinical Rooms in ED	20
Figure 1. 13: Procedure Room Zone W/O Need for Anaesthesia Workspace	22
Figure 1. 14: Procedure Room Zone W/ Anaesthesia Workspace	23
Figure 1. 15: FGI Workshop Shots of Bariatric Accommodation Topic Team	24
Figure 1. 15: FGI Workshop Shots of Bariatric Accommodation Topic Team	25
Figure 1. 16: The Big Front Door Model	27
Figure 1. 17: Triage Surge Scenario, Resuscitation	28
Figure 1. 18: Triage Surge Scenario, High Dependency	28
Figure 1. 19: Triage Surge Scenario, Medium Dependency	29
Figure 1. 20: Triage Surge Scenario, low Dependency	29
Figure 1. 21: Showing the Layout of the Minor Injuries/Walk-In Pods.	30
Figure 1. 22: Covered Entrance and Ambulance Bay Salford Royal NHS Foundation Trust	31
Figure 1. 23: Informal Layout of Ambulatory Assessment Holding Area. Salford Royal NI	IS
Foundation Trust	31
Figure 1. 24: Chair-Centric Concepts: Privacy Dividers with Supporting Consultation Space	ces at
Cambridge University Hospitals Trust -Addenbrooke's Hospital	32
Figure 1. 25: Staff Base, Colour Coded to Acuity, with Storage Bays Opposite Patient Roc	oms.
Malmo Emergency Department, Sweden	32
Figure 1. 26: Staff Workstation Adjacent to Single Patient Treatment Rooms; Sliding Door	rs and
Semi-Private Patient Screening Malmo Emergency Department, Sweden	33
UNIT 2:	
<u>FIGURE</u>	<u>PAGE</u>
Figure 2. 1: Evidence Based Design Time Line	42
	43
	44
Figure 2. 2: The Framework of Integrated Building Design	57
Figure 2. 2: The Framework of Integrated Building Design	58
Figure 2. 2: The Framework of Integrated Building Design	
Figure 2. 2: The Framework of Integrated Building Design	
Figure 2. 2: The Framework of Integrated Building Design	59
Figure 2. 2: The Framework of Integrated Building Design	59 59
Figure 2. 2: The Framework of Integrated Building Design	59 59

Figure 2. 11: Observation Unit at the University Of Chicago ED, Incorporates Decentralized Chartin	g
Desks6	8
Figure 2. 12: Acuity Adaptable Room in ED of Ahuja Hospital, Beachwood Ohio	8
Figure 2. 13: Reduction in Transport of Patients between Units in ED with Acuity Adaptable	
Rooms6	9
Figure 2. 14: Reduction in Annual Index in Medication Errors in ED of US with Acuity Adaptable	
Rooms6	9
Figure 2. 15: Design A	1
Figure 2. 16: Design B	1
Figure 2. 17: Design C	2
Figure 2. 18: Lean Kano Model for Patient Satisfaction Evaluation	7
Figure 2. 19: Lean Process in Healthcare Design.	0
Figure 2. 20: Boulder Architects; Crow Valley Healthplex Ed Vision for Fundamental Steps of Lean	
Healthcare Planning and Design	1
Figure 2. 21: Lean Clinical Model Source: The Crow Valley Healthplex	6
Figure 2. 22: Pod Design Model in People's Clinic, Colorado	7
Figure 2. 23: Traditional Multi-Specialty Model	8
Figure 2. 24: Denver ED Model	9
Figure 2. 25: Virginia Mason Ed Model	9
Figure 2. 26: Utah ED Model	0
Figure 2. 27: Exam Room in Sutter Care Center, California	1
MANUE 2.	
UNIT 3:	
<u>PAGI</u>	3
Figure 3. 1: Concept of Analyzing Case Studies Diagram	1
Figure 3. 2: DAE Perspective Shot, Source: HKS, 2011	2
Figure 3. 3: DAE Site Layout	4
Figure 3. 4: DAE Hospital Building Staking Diagram	5
Figure 3. 5: DAE, North Tower, Ground Floor, Departmental Relationships, Concept Design	
Phase	5
Figure 3. 6: DAE, North Tower, Ground Floor, Departmental Relationships, Schematic Design	
Phase	6
Figure 3. 7: DAE, North Tower, Ground Floor, Operational Functions, Concept Design Phase 10	6
Figure 3. 8: DAE, North Tower, Ground Floor, Operational Functions, Schematic Design Phase 10	7
Figure 3. 9: Surge and Circulation in ED Presented in Concept Design Phase	2
Figure 3. 10: Surge and Circulation in Ed Presented In Schematic Design Phase	2
Figure 3. 11: Support Areas in ED Presented In Concept Design Phase	8

Figure 3. 12: Clinical Areas in ED Presented In Concept Design Phase	. 124
Figure 3. 13: Clinical Areas in Ed Presented In Schematic Design Phase	. 124
Figure 3. 14: DAFH 6th October Branch Layout Shot	. 129
Figure 3. 15: DAFH 6th October Branch Perspective Photo	. 129
Figure 3. 21: DAFH 6th of October, Giza Ground Floor Plan, Ed Departmental Relationships	. 133
Figure 3. 22: DAFH Nasr City, Cairo Branch Ground Floor Plan, Ed Departmental Relationships.	. 134
Figure 3. 24: DAFH 6th of October, Giza, ED Operational Functions	. 134
Figure 3. 25: DAFH Nasr City, Cairo Branch Ed Operational Functions	. 135
Figure 3. 26: DAFH 6th of October, Giza, Ed Surge and Circulation	. 143
Figure 3. 27: Surge and Circulation in ED Presented In Schematic Design Phase	. 144
Figure 3. 28: Support Areas in ED Presented in 6th October Branch	. 150
Figure 3. 29: DAFH Nasr City, Cairo Branch Ed Support Areas in ED	. 150
Figure 3. 30: DAFH 6th of October, Giza, Clinical Areas in ED	. 155
Figure 3. 31: DAFH 6TH of October, Giza, Annex Building Same Handed Operational Room	. 155
Figure 3. 32: Clinical Areas in DAFH Nasr City, Cairo Branch ED Operational Functions	. 156
Figure 3. 33: Middlesex Hospital Ground Floor Plan	. 158
Figure 3. 34: Brent Emergency Care and Diagnostic Centre (BECAD) Layout	. 159
Figure 3. 35: Exemplar Layout	. 159
Figure 3. 36 BECAD, Ed Layout	. 159
Figure 3. 37: Surge and Circulation in BECAD.	. 164
Figure 3. 38: Surge and Circulation in Example Plan.	. 165
Figure 3. 40: Support Areas in Ed Presented In Example Plan	. 170
Figure 3. 41: Clinical Areas In In BECAD	. 173
Figure 3. 42: Clinical Areas in Ed Presented in Example Plan	. 176
Figure 3. 43: Linear Layouts Restrict Visibility	. 177
Figure 3. 44: The Ribbon Ed Builds Upon the Concept of A Radial Layout by Allowing A	
Decentralized Distribution of Supplies and Equipment	. 178
Figure 3. 45: Ideal Triage Flow	. 179
Figure 3. 46: University Hospital in Cincinnati	. 179
Figure 3. 47: Radial Layout Concept Introduced At University Hospital	. 179
Figure 3. 48: University Hospital Future Extension	. 179
Figure 3. 49: Concept Is Advanced With Triage-Flow-Through and Decentralization of Supplies	. 179
Figure 3. 50: Marymount Hospital Ribbon Concept in ED	. 179
Figure 3. 51: Current UPMC Hospital Building	. 184
Figure 3. 52: 2 Billion Renovated Design to Be Opened In 2022	. 184
Figure 3. 53: ED Entrance in Renovated Design	. 185
Figure 3. 54: Mock-Up for Ribbon Concept	. 185

LIST OF TABLES

INTRODUCTION:

<u>FIGURE</u> <u>PAGE</u>	<u></u>
Table a- 1: Challenges and Reasons of Emergency Healthcare Architecture xx	ii
Table a- 2: Comparison between Operational Design Requirements in 4 Design Guidelines (HBN15	j,
2015, FGI 2014, HAAD 2011 and EDMH&HF 2010)xxi	iii
Table a- 3: Comparison between operational design requirements in 4 design guidelines (HBN15,	
2015, FGI, 2014, HAAD, 2011 and EDMH&HF)xxvi	iii
Unit 1	
<u>FIGURE</u> <u>PAG</u>	<u>E</u>
Table 1. 1: Comparison between Specifications of Entrance in National and International Design	
Guidelines	5
Table 1. 2: Comparison between the Exam /Treatment, Procedure Rooms and Operation Rooms	
Updated in 2018 FGI	21
Unit 2	
<u>FIGURE</u> <u>PAGI</u>	E
Table 2. 1: Characteristics of the studies included and their Level of Evidence in the Review for	
Patients, Family, and Staff Categorized by Topics and Subtopics	15
Table 2. 2: Summary of the Relationship between Design Factors and Healthcare Outcomes 5	57
Table 2. 3: Same Handed Rooms Design Comments	50
Table 2. 4: Issues Regarding 100% of Patient Rooms Configured For Single Occupancy	52
Table 2. 5: Categories, Issues, And Findings Related To Single Versus Multiple Occupancy	
Accommodation6	57
Table 2. 6: Performance Attributes Weights 7	7
Table 2. 7: Performance Calculation Matrix Presented In Final Report 7	19