Correlation between Visual Functions and Optical Coherence Tomography, Fundus Auto Fluorescence and Fundus Fluorescein Angiography Findings in Treatment-Naive Diabetic Macular Edema

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Ophthalmology

By

Sara Samy Gamal El Din

MB. Bch, M.Sc., Ophthalmology
Faculty of Medicine, Ain Shams University
Supervised by

Prof. Mohamed Omar Rashed

Professor of Ophthalmology Faculty of Medicine, Ain-Shams University

Prof. Sherif Nabil Embabi

Professor of Ophthalmology Faculty of Medicine, Ain-Shams University

Prof. Maged Maher Salib

Professor of Ophthalmology Faculty of Medicine, Ain-Shams University

Dr. Ahmed Mohamed Habib

Lecturer of Ophthalmology
Faculty of Medicine, Ain-Shams University

Faculty of Medicine - Ain Shams University Cairo, Egypt

2019

First and foremost, Thanks to **GOD**, to whom I relate any success in achieving any work in my life.

No words can express my deepest appreciation and profound respect to **Prof. Mohamed Omar Rashed,** Professor of Ophthalmology, Ain Shams University, for his continuous guidance and support. He has generously devoted much of his time and his effort for planning and supervision of this study.

Also, my profound gratitude to **Prof. Sherif Nabil Embabi,** Professor of Ophthalmology, Ain Shams University, for his kind supervision and support. It was great honor to work under his supervision.

I would like also to thank **Prof. Maged Maher Salib**, Professor of Ophthalmology, Ain Shams University Hospitals, for his support, help and constructive criticism during this work.

I would like also to thank **Dr. Ahmed Mohamed Habib,** Lecturer of Ophthalmology, Ain Shams University
Hospitals, for his support and help during this work.

Last but not least, I dedicate this work to **my** family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Sara Samy Gamal El Din

Tist of Contents

Subject Pe	age No.
List of Abbreviations	I
List of Tables	V
List of Figures	VII
Introduction	1
Aim of the Work	6
Review of Literature	••••••
Imaging Modalities of DME	7
- Fundus Fluorescein Angiography	8
- Optical Coherence Tomography as a Diagnostic and Prognostic Tool in DME	16
- Fundus Autofluorescence	
Patients and Methods	53
Results	61
Discussion	90
Conclusion and Recommendations	101
Summary	103
References	105
Arabic Summary	· · · · · · · · · · · · · · · · · · ·

Tist of Abbreviations

Abb.	Full term
11-cis RAL	11-cis Retinal
11-cis ROL	11-cis Retinol
A2 E	Bioretinoids (N-retinylidene-N-retinylethanolamine)
ABCR	ATP binding cassette Transporter
ACE inhibitors	Angiotensin converting enzyme inhibitors
At RDH	All-trans Retinal Dehydrogense
BCVA	Best Corrected Visual Acuity
BRB	Blood Retinal Barrier
CPFT	Central Point Foveal Thickness
СМЕ	Cystoid Macular Edema
CRT	Central Retinal Thickness
CSCR	Central Serous Chorioretinopathy
CSFT	Central Subfield Foveal Thickness
cSLO	Confocal Scanning Laser Ophthalmoscope
CSME	Clinically Significant Macular Edema
DCP	Deep Capillary Plexus
DRCR	Diabetic Retinopathy Clinical Research
DRIL	Disorganization of Retinal Inner Layer

Abb.	Full term
DM	Diabetes Mellitus
DME	Diabetic Macular edema
DMI	Diabetic Macular Ischemia
DNA	Deoxyribonucleic acid
DR	Diabetic Retinopathy
EDI	Enhanced Depth Imaging
ELM	External Limiting Membrane
ETDRS	Early Treatment Diabetic Retinopathy
	Study
EZ	Ellipsoid Zone
FAF	Fundus Autofluorescence
FAZ	Foveal Avascular Zone
FFA	Fundus Fluorescein Angiography
GAT	Goldmann Applanation Tonometer
GCC	Ganglion Cell Complex
HbA1c	Hemoglobin A1C
HRS/HRF	Hyper Reflective Spots/Foci
HTN	Hypertension
ICC	Intraclass Correlation Coefficient
IL-1β	Interleukin 1 beta
INL	Inner Nuclear Layer
IPL	Inner Plexiform Layer
IRMA	Intraretinal Microvascular Abnormalities
LBs	Lipid Bisretinoids

🕮 List of Abbreviations 🕏

Abb.	Full term
LF	Lipofusin
LMP	Lysosomal Membrane Permeabilization
Log MAR	Logarithm of the Minimum Angle of Resolution
LRAT	Lecithin Retinol Acyl Transferase
MAs	Microaneurysms
Mtorc 1	Mammalian Target of Rapamycin
nAMD	Neovascular Age-related Macular Degeneration
N- ret PE	N-retinylidene phosphatidyl anolamine
NALP3	Cryopyrin
NPDR	Non Proliferative Diabetic Retinopathy
NSD	Neurosensory Detachment
NVDs	New Vessels at the Disc
NVEs	New Vessels Else where
ОСТ	Optical Coherence Tomography
ОСТА	Optical Coherence Tomography
	Angiography
ONL	Outer Nuclear Layer
OPL	Outer Plexiform Layer
OS-IS	Outer Segment –Inner Segment
PCV	Polypoidal Choroidal Vasculopathy
PDR	Proliferative Diabetic Retinopathy
PKc	Protein Kinase C

Abb.	Full term
POS	Photoreceptor Outer Segment
PVD	Posterior Vitreous Detachment
RNFL	Retinal Nerve Fiber Layer
RPE	Retinal Pigment Epithelium
SCP	Superficial Capillary Plexus
SD	Standard Deviation
SD-OCT	Spectral-Domain Optical Coherence Tomography
SS-OCT	Swept- Source Optical Coherence Tomography
SFCT	SubFoveal Choroidal Thickness
SRD	Serous Retinal Detachment
TFEB	Transcription Factor EB
VEGF	Vascular endothelial growth factor
VKH	Vogt Koyanagi Harada
VMT	Vitreomacular Traction
WESDR	Wisconsin Epidemiologic Study of Diabetic Retinopathy

🚨 List of Tables 🕏

Tist of Tables

Table	Title	Page
1	Median & distribution of patients' CSFT, CPFT & FAZ size	61
2	Correlation between DME risk factors (HTN and type of DM) and BCVA & CSFT	63
3	Correlation between DME risk factors (DM duration and HBA1c) and BCVA & CSFT	64
4	Correlation between BCVA & specific parameters in OCT (ORL, INL, HRF) & FFA (DMI)	66
5	Correlation between BCVA & presence of papillomacular ischemia	66
6	Correlation between BCVA & specific parameters in OCT (CSFT, CPFT) & FFA (FAZ size, DMI)	67
7	Correlation between BCVA & FAF parameters	67
8	Correlation between color vision & OCT (ORL, INL, HRF) FFA (DMI) and FAF specific parameters	70
9	Correlation between color vision & specific parameters in OCT (CSFT, CPFT) & FFA (FAZ)	71
10	Comparison of different degrees of BCVA & specific parameters in OCT (CPFT,CSFT) and FFA (FAZ size)	74
11	Comparison of different degrees of BCVA & SFCT	74

List of Tables 🕏

Table	Title	Page
12	Comparison of different degrees of BCVA & specific parameters in OCT (ONL, INL, cystoid spaces, HRF) & FFA (MI and its grades)	75
13	Comparison of different degrees of BCVA & Grades of macular ischemia	78
14	Comparison of different degrees of BCVA & presence of Hyper-FAF	79
15	Comparison of different degrees of BCVA & number of Hyper-FAF spots	79
16	Correlation between CSFT & perifoveal leakage in FFA	81
17	Correlation between CSFT & SFCT	82
18	Correlation bet. Cystoid spaces in OCT & hyper-FAF spots	82
19	Correlation between ONL integrity & CSFT	84
20	Correlation between severity of macular ischemia & INL integrity	84

List of Figures

Figure	Title	Page
1	Fundus photos of two of the study cases: Different stages of DR	3
2	Ischemic maculopathy in one of the study cases	13
3	ETDRS grid	14
4	Intra-retinal layers on SD-OCT macular images	17
5	Different patterns of diabetic macular edema at optical coherence tomography in the study cases	18
6	One of the excluded cases in our study group with retinal thinning with evident disruption of EZ and ELM.	23
7	One of the study cases with disrupted ellipsoid zone in the fovea with DIRL	25
8	OCT photo shows scattered HRF in inner retinal layers in one of the study cases	26
9	OCT photo shows tractional DME with VMT & ERM in one of the excluded cases	31
10	One of the study cases with correlated FFA & OCT	32
11	Example of measuring subfoveal choroidal thickness measurement in the study cases	35
12	Normal en face OCT-A images and their corresponding segmentation slaps	39
13	Visual cycle and origin of Lipofusin pigment	43
14	Noxious effect of excessive lipofusin pigment accumulation	44

List of Figures 🕏

Figure	Title	Page
15	Normal FAF of both RT and LT eyes	45
16	Normal FAF using VX-20 Retinal camera in a normal eye	45
17	FAF photo shows single hyper FAF with their corresponding OCT	51
18	FAF photo shows multiple hyper FAF with their corresponding OCT	51
19	Correlation between presence of HTN & BCVA Log MAR	63
20	Correlation between the presence of HTN & CSFT	64
21	Correlation between BCVA & ONL integrity	67
22	Correlation between BCVA & macular ischemia	68
23	Correlation between BCVA & CSFT	68
24	Correlation between BCVA & CPFT	69
25	Correlation between BCVA & FAZ size	69
26	Correlation between color vision (CV) & ONL integrity	71
27	Correlation between color vision (CV) & spots of hyper-FAF	72
28	Correlation between color vision (CV) & CSFT, CPFT	72
29	Comparison between degrees of BCVA & CSFT, CPFT	76
30	Comparison between degrees of BCVA & Macular ischemia	76
31	Comparison between degrees of BCVA & presence of cystoid spaces	77

List of Figures 🕏

Figure	Title	Page
32	Comparison between two groups of log MAR	78
	VA and grades of macular ischemia	70
33	Comparison between degrees of BCVA &	80
	spots of hyper FAF	00
34	Correlation between CSFT & type of	81
	perifoveal leakage	01
35	Correlation between the presence of cystoid	83
	spaces & spots of hyper FAF	03
36	FFA photo with grade 0 of macular ischemia	85
37	FFA photo with grade 1 (questionable) of	85
	macular ischemia	0
38	FFA photo with grade 2 (definite) of macular	86
	ischemia	00
39	FFA photo with grade 3 (moderate) of	86
	macular ischemia	00
40	FFA photo with grade 4 (severe) of macular	87
	ischemia	07
41	FAF photos in cases of the study. Left shows	
	single hyper FAF spot, Right shows multiple	87
	spots	
42	Case of center involving DME & foveal cyst	88
	with single hyper FAF spot	00
43	Case of cystoid ME with multiple hyper FAF	89
	spots	0,

Correlation between Visual Functions and Optical Coherence Tomography, Fundus Auto Fluorescence and Fundus Fluorescein Angiography Findings in Treatment-Naive Diabetic Macular Edema

Abstract

Background: Diabetic macular edema (DME) is a sight-threatening consequence of diabetic retinopathy. Available treatment modalities for DME involve repeated and invasive intraocular injection of anti-VEGF and other substances, placing heavy burdens on the patient and the health care facilities. So, identifying reliable methods for DME prognosis is actually very helpful. Multimodal retinal imaging tools provide us with these predictive prognostic biomarkers

Aim of the Work: To correlate between visual functions (visual acuity and color vision) with macular features of OCT, FAF and FFA in patients with untreated (treatment-naive) DME as a guide for visual prognosis of these patients.

Patients and Methods: Fifty eyes of 35 diabetic patients with untreated clinically significant macular edema (CSME) underwent best corrected visual acuity (BCVA) determination (logMAR), slit lamp biomicroscopy; fluorescein angiography (FFA;FAZ size, macular leakage pattern, areas of capillary dropout) optical coherence tomography (OCT; central point foveal thickness [CPFT], volume, outer and inner retinal layers intergrity [ONL, INL], hyper-reflective foci[HRF], subfoiveal choroidal thickness[SFCT]); fundus autofluorescence (Hyper FAF; absent or increased (FAF, single or multiple spots). Linear correlation and three-way analysis of covariance were used for statistics.

Results: In OCT, we found that CPFT & ORL integrity is significantly well correlated to visual function (BCVA, color vision). However, CSFT was only correlated to visual acuity but not color vision. Regarding FFA parameters, especially (FAZ size, areas of capillary drop out), we found that these parameters are correlated significantly to visual acuity but not color vision. On the other hand, we found that the presence of hyper FAF spots was not related significantly to visual acuity but related to a significant level to color vision. However, a number of spots were not correlated to visual acuity or color vision. There was significant correlation between retinal thickness in OCT and type of leakage in FFA. Also, large cystoid spaces and FAF spots in the fovea were significantly correlated together. However, there was no correlation between retinal thickness and subfoveal choroidal thickness in OCT.

Conclusions:

- Multimodal retinal imaging is of great benefit not only in diagnosis but also in its prognosis.
- Integration between different retinal imaging tools helps in finding alternative and less invasive way in diagnosis.
- FAF is simple non-invasive imaging mode to assess RPE function with evolving application in DME.

Keywords: Diabetic Macular Edema, Best Corrected Visual Acuity, Optical Coherence Tomography, Fundus Auto Fluorescence, Fundus Fluorescein Angiography.

Introduction

Diabetes mellitus (DM) is a major health problem that affects 415 million people all over the world, and this number is estimated to reach 642 million by 2040 (*Cho et al.*, 2018).

Due to this high prevalence of DM, it is not surprising that Diabetic Retinopathy (DR) is one of main causes of vision loss in adults aged 20–74 years. DR ranked as the fifth most common cause of preventable blindness. Over one-third of diabetics had signs of DR, and a third of these were afflicted with diabetic vision-threatening complications (*Lee et al.*, 2015).

Diabetic Macular Edema (DME) involves accumulation of excess fluid and lipids in the macula due to breakdown in the Blood Retinal Barrier (BRB). When this fluid extends into the fovea, the patient becomes symptomatic with metamorphopsia and drop of vision. (Antonetti et al., 1999).

Most important risk factors for DME are the type of diabetes (type I or II), the treatment method (insulin, oral hypoglycemic drugs, or diet only), and the mean duration of diabetes. Other risk factors include high levels of

hemoglobin A1c (HbA1c), hypertension and hyperlipidemia, smoking, pregnancy, physical inactivity and renal disease, while use of angiotensin converting enzyme (ACE) inhibitors has a regressive effect on DR (*Muni et al.*, 2013).

In the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR), the 10-year rate of developing DME was 20.1% in patients with type I diabetes, 13.9% in patients with type II diabetes not using insulin, and 25.4% in type II diabetes patients using insulin (*Klein et al.*, 2009).

DME can develop at any given stage of DR. However, its prevalence increases with the severity of DR; it affects 3% of eyes with mild non-proliferative diabetic retinopathy (NPDR), increases to 38% of eyes with moderate to severe NPDR, and reaches 71% of eyes with proliferative diabetic retinopathy (PDR) (Figure 1) (Bandello et al., 2017).