STUDIES ON STERIGMATOCYSTIN IN SOME WHEAT BASED FOODS

BY

TAREK AHMED ELDOSOKY

B. Sc. Agric. Sc. (Food Science), Tanta University, 2001

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

In
Agricultural Science
(Food Science and Technology)

Dep. of Food Science-Faculty of Agriculture
Ain Shams University

2008

STUDIES ON STERIGMATOCYSTIN IN SOME WHEAT BASED FOODS

TAREK AHMED ELDOSOKY

B.Sc. Agric. Sc. (Food Science), Tanta University 2001

Under the Supervision of:

Prof. Dr. Neverty Fathy Mahmoud Gamal

Prof. of Food Science and Technology, Dep. of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Khayria Mahmoud Naguib

Prof. Food Toxicology and Contaminants, National Research Center

Dr. Hanan Mohamed Abdo Al-sayed

Lecturer of Food Science and Technology, Dep. of Food Science, Faculty of Agriculture, Ain Shams University

ABSTRACT

Tarek Ahmed El dosoky. "Studies On Sterigmatocystin In Some Wheat Based Foods", Unpublished M.Sc Thesis, Dept. of Food Science, Faculty of Agriculture, Ain Shams University, 2008

Sterigmatocystin (Stg) is a mycotoxin produced by *Aspergillus versicolor* and *Aspergillus nidulans*. Stg has been shown to be carcinogenic, causes cancer in number of animal species and classified as class 2B carcinogen (as possibly carcinogenic to humans) by IARC.

The results indicated that the developing system Benzene: acetic acid (9: 1 v/v) showed the best separation for small concentrations of Stg when used TLC technique. Moreover the data showed also that the mobile phase methanol: water (8: 2 v/v) succeeded to separate Stg at 5.4 min retention time when the flow rate was 1ml/ min. When comparison between different methods for Stg determination by HPLC in spiked wheat samples. The results cleary indicated that the percentages of loss in AOAC (2000) method were 10.44, 24.55, 17.07 and 28.95% for the tested concentration levels (5, 10, 50 and 100µg) respectively. Moreover the percentage of toxin loss ranged from 93.47 and 96.64% with average of 94.895 in TLC determination and however, it ranged from 10.52 and 27.95% with average of 19.68% in HPLC method.

Determination of naturally occurrence of Stg in Wheat, Bread (balady and Fino) and Cerelac. The results indicated that 16, 8, 12 and 6% for wheat, Balady bread, Fino bread and Cerelac respectively.

Studies on naturally sterigmatocystin-contaminated wheat have shown that highest concentrations of Stg were found in wheat flour with a reduction percentage ranged from 87.109 to 59.943% while the lowest concentrations were detected in bran with a reduction percentage ranged from 40.057 to 12.839%. The reduction percentage of Stg after baking was only 16.949% while it was 43.412% after fermentation.

The current results indicated that the fermentation process significantly reduced Stg to 3.380, 6.417 and 20.755 μ g/g in dough made from flour artificially contaminated with 5, 10 and 50 μ g/g, respectively. The residual amount of Stg was 2.329, 4.240 and 12.625 μ g/g after baking dough artificially contaminated with different concentration of Stg i. e, 5, 10 and 50 μ g/g, respectively.

A higher percent of reduction of Stg could be occurred during fermentation of lokmet el-khady made with $5\mu g/g$ Stg, being 42.766% while it reached 63.324% when $50\mu g/g$ Stg was used. The average percentage of Stg reduction during frying of lokmet el-khady was 63.26%, 61.23% and 72.28% for the level of 5, 10 and $50\mu g/g$, respectively.

Key Words: sterigmatocystin, HPLC, TLC, Wheat, processing

Acknowledgement

Praiseworthy and gratitude to **ALLAH** who gave me the ability to finish my thesis.

I would like to pray for **Prof. Dr. Mohamed A. Abdulla**, who was the supervisor of this thesis, suggesting the points of research, putting the plan of this work and for his valuably directions before his departure.

Deep appreciation and gratitude are extended to **Prof Dr. Neverty F. M. Gamal** Prof. of Food Science and Technology, Faculty of Agriculture, Ain-shams University for her kind supervision, editing and revision of the thesis.

I wish to express my deepest appreciation to **Prof. Dr. Khayria M. Naguib** Prof. of Food Toxicology and Contaminants Department, National Research Center, for her keen supervision, continuous guidance and encouragement as well as scientific revision of this work

Grateful appreciation to **Dr. Hanan, M. A. Al-Sayed**, Lecturer of Food Science and Technology, Faculty of Agriculture, Ain-shams University for co-supervising of this thesis.

Grateful appreciation and sincere gratitude to **Dr. Mona M. Abdel Galil** prof. of Food Contaminants, National Research Center for her keen supervision of this work

Grateful appreciation and sincere gratitude to Dr. **Mosaad Attia Abdel-Wahhab** Prof. of Toxicology, National Research Center for his keen supervision, able guidance as well as editing and valuable criticism during all stages of this work.

Grateful appreciation is also due to Prof , Dr. Abdel-Ghany El-Gendy former Dean of the Faculty of Agriculture, Ain-shams University for his great support during the course of this study. Deep thanks are also due to the staff members at the Arid Land Agricultural Research Services Center Faculty of Agriculture, Ain-shams University for their valuable help in the third part of this study

I wish to express my great thanks for all the stuff members at the Food Science and Technology Dept., Faculty of Agriculture, Ain-Shams Univ. and Department of Food Toxicology & Contaminants, National Research Center for their help and encouragement during the course of this study.

CONTENTS

LIST OF	TABLES	vi
LIST OF	FIGURES	vii
LIST OF	ABBREVIATION	ix
1. INTRO	DUCTION	1
2. REVIE	W OF LITERATURE	3
2.1.	History and Identification of Sterigmatocystin	3
2.2.	Chemical Structure and Physical Properties of Stg	3
2.3.	Biosynthetic Pathways	4
2.4.	Natural Occurrence of Sterigmatocystin	6
2.5.	Conditions favoring the development of mycotoxins in grains	
	with particular reference to stergmatocystin	10
2.6.	Toxicological effect of Sterigmatocystin	17
2.6.1.	Toxicity to Animals	17
2.6.2	Toxicity to human	19
2.7.	Diminution effect on aflatoxins during processing of some	
	food products	21
2.8.	General Principals for the determination of	
	mycotoxins	23
2.8.1.	Determination of Stg by TLC and HPLC	
	techniques	25
2.8.1.1.	Determination of Stg by using Thin Layer Chromatography	
	(TLC) technique	25
2.8.1.2.	Determination of Stg by using High Performance Liquid	
	Chromatography (HPLC) technique	28
3. MATER	RIALS AND METHODS	32
	Part 1: Comparative study for the detection and determination	
	of Sterigmatocystin in wheat	32
3.1.	Materials	32
3.1.1.	Solvent&Chemical	32
3.1.2.	Sterigmatocystin and Aflatoxins standards	32

3.1.3.	Wheat samples	32
3.1.4.	Apparatus	32
3.1.5.	Thin Layer Chromatography (TLC) Plates	32
3.1.6.	Sep-pack silica cartridge C ₁₈ column	33
3.2.	Methods	33
3.2.1.	Preparation of spiked wheat samples	33
3.2.2.	Extraction and determination of Stg according to AOAC	22
2221	(2000)	33
3.2.2.1.	Extraction	33
3.2.2.2.	Determination using Thin Layer Chromatography (TLC) technique	33
3.2.2.3.	Calculation of Stg	34
3.2.3.	Extraction and determination of Stg according to Athnasios and Kuhn (1977)	34
3.2.3.1.	Extraction	34
3.2.3.2	Determination using TLC technique	35
3.2.3.3	Calculation of Stg	35
3.2.4.	Extraction and determination of Stg according to Shannon	25
2241	and Shotwell (1976)	35
3.2.4.1.	Extraction	35
3.2.4.2.	Column cleanup	35
3.2.4.3.	Determination by using TLC technique	36
3.2.5.	Extraction and determination of Stg according to Schmidt <i>et al</i> (1980)	36
3.2.5.1.	Extraction	36
3.2.5.2.	Sep-pack silica cartridge C ₁₈ column	37
	Part 2: Natural occurrence of Stg in wheat, Bread (fino&	
	balady) and cerelac	37
3.3.1.	Materials	37
3.3.1.1.	Collected samples	37
3.3.2.	Method	37
3.3.2.1.	Preparation of samples	37
	r	٠,

3.3.2.2.	Extraction and determination of Stg
3.3.2.2.1.	Extraction of Stg
3.3.2.2.2.	Determination of Stg by HPLC
3.3.3.	Detection and determination of aflatoxins
3.3.3.1.	Preparation of working solution of aflatoxins
3.3.3.2.	Determination of Aflatoxins (for food grains)-CB
	(Contaminants Branch) Method
3.3.3.2.1.	Extraction
3.3.3.2.2.	Clean-up procedures
3.3.3.2.3.	Preliminary TLC
3.3.3.2.4.	Determination of aflatoxins by HPLC technique
3.3.3.2.5.	HPLC conditions
3.4.	Determination of moisture content in wheat samples
Part 3: Dim	inution effect on sterigmatocystion during processing of wheat
into balady l	bread and lokmet –el-khady
3.5. 1.	Materials
3. 5. 1. 1.	Wheat grain samples
3. 5. 1. 2	Dough ingredients
3. 5. 2.	Methods
3. 5. 2. 1.	Preparation of wheat flour (82% extraction) and
	bran
3.5.2.1.a.	Natural contaminated wheat flour
3.5.2.1.b.	Artificial contaminated wheat flour
3. 5. 3.	Preparation of balady bread
3. 5. 4.	Preparation of lokmet el- khady
3.5.5.	Extraction and determination of sterigmatocystin
3.5.5.1.	Extraction of stergmatocystin
3.5.5.2.	Detrmination of sterigmatocystin
	'S AND DISCUSSION
	parative study for the extraction and determination of Stg in
wheat	

Applying of TLC technique for extraction and determination	
of Stg in wheat	44
Comparison between different developing system	44
Applying of HPLC technique for extraction and	
determination of Stg in wheat	50
Comparison between different mobile phases	5(
Comparison between different selected methods for Stg	
•	52
Determination of Stg in Spiked Wheat Samples extracted by	32
AOAC (2000) and determined by TLC and HPLC	
techniques	62
Part II: Natural occurrence of Stg in Wheat, Bread (fino &	
balady) and cerelac using the current established	
method	68
Wheat	69
Bread (balady and fino)	72
Cerelac (Infant formula)	76
Co-occurrence of Aflatoxins in Stg contaminated samples	78
Part III:4. 6. Diminution effect on Stg during processing of	
balady bread and lokmet el-khady	82
Effect of bread making process on Stg reduction using	
naturally contaminated wheat	82
Effect of milling	82
Effect of fermentation (active dry yeast)	84
Effect of baking	84
Effect of bread making process in Stg reduction using	
artificially contaminated wheat flour	86
	of Stg in wheat

4. 6. 2. 1.	Effect of fermentation	86
4. 6. 2. 2.	Effect of baking	86
4.6.3.	Effect of lokmet el-khady process on Stg reduction using	
	artificially contaminated wheat flour	87
4.6.3.1.	Effect of fermentation	88
4.6.3.2.	Effect of frying	88
5. SUMMA	ARY	91
6. REFER	ENCES	96
ARARIO	CSUMMARY	

LIST OF TABLES

No	Title	Page
1	Upper limit of safe moisture contents ^a for storing grain up to a	
	year under Canadian Prairtie climatic conditions	13
2	LD ₅₀ of Stg in different animal species	17
3	Recovery percentage of Stg in spiked wheat samples extracted	
	by different extraction and determination methods	43
4	Composition of developing systems used in TLC technique	45
5	Retention time (min) of Stg in different mobile phase systems	
	on Hyper clone 5µ ODS C18 column	51
6	Concentration of Stg determined in spike wheat samples by	
	HPLC using different selected methods	53
7	Analysis of variance for the difference between Stg	
	concentrations in spiked wheat samples extracted by different	
	methods and determinated by HPLC	58
8	Estimated cost (LE) and estimated time (min) for the different	
	exciting methods	61
9	Concentration of Stg detected in spiked wheat samples	
	extracted with AOAC (2000) method and determined by either	
	TLC or HPLC	62
10	Natural Occurrence of Stg in wheat grain samples	70
11	Moisture content in positive wheat samples	72
12	Natural occurrence of Stg in balady bread	74
13	Natural occurrence of Stg in fino bread	74
14	Natural occurrence of Stg in cerelac	77
15	Co-occurrence of AFs and Stg in different commodity	
	tested	80
16	Distribution of Stg into commercially milled naturally	
	contaminated wheat fractions	82

17	Effect of balady bread making process on Stg reduction using	
	naturally contaminated wheat	84
18	Effect of bread making process on Stg reduction using	
	artificially contaminated wheat flour with different	
	concentrations of Stg	86
19	Effect of lokmet el-khady process on Stg reduction using	
	artificially contaminated wheat flour with different	
	concentrations of Stg	89

LIST OF FIGURES

No	Title
1	Chemical structures of (A) sterigmatocystin and (B) aflatoxin B1
2	Aflatoxin and sterigmatocystin biosynthetic pathway
3	Recovery percentage of Stg in spiked wheat samples extracted by different extraction and determination methods
4	TLC plate of Stg developed in the developing system benzene: acetic acid(9:1v/v) shows Stg in wheat samples spiked with 5 μ g (1,2) ,10 μ g (3,4), standard (5,6), 50 μ g (7,8),100 μ g(9,10)
5	Two dimension TLC plate of Stg developed in the developing system of benzene: acetic acid $(9:1v/v)$ followed by toluene: ethyl acetate: formic acid $(6:3:1v/v/v)$, (a) sample was spiked with $5\mu g$ and (b) sample was spiked with $10\mu g$
6	TLC plate of Stg in spiked wheat samples developed in benzene: methanol: acetic acid (90:5:5 v/v/v). 5µg and 10 µg concentration could not be detected
7	TLC plate of Stg developed in the developing system of Shannon and Shotwell (1976); (a) Stg standard and (b) detection of Stg in wheat spiked with 5, 10, 50, 100µg concentration could not be detected.
8	HPLC chromatogram of Stg standard extracted by Schmidt et al (1980) method with mobile phase methanol: water (8:2)
9	HPLC chromatogram of standard Stg (5μg) with inject 20μ
∂a	HPLC chromatogram of Stg in the sample spiked with 5µg and extracted by AOAC (2000) method (Stg appeared at 5.33 min and inject 10 µl)
)b	HPLC chromatogram of Stg in the sample spiked with 5µg and extracted by Athnasios and Kuhn (1977) method (Stg appeared at

	5.38 min and inject 10 μl)
9c	HPLC chromatogram of Stg in the sample spiked with 5µg and extracted by Shannon and Shotwell (1976) method (Stg appeared at
	5.38 min and inject 10 µl)
9d	HPLC chromatogram of Stg in the sample spiked with 5µg and
	extracted by Schmidt <i>et al.</i> (1980) method (Stg appeared at 5.35 min
	and inject 10 µl)
10a	HPLC chromatogram of Stg in the sample spiked with 100µg and
	extracted by AOAC (2000) method (Stg appeared at 5.33 min with
	inject 10µl)
10b	
100	extracted by Athnasios and Kuhn (1977) method (Stg appeared at
	5.55 min with inject 10µl)
10c	HPLC chromatogram of Stg in the sample spiked with 100µg and
100	extracted by Shannon and Shotwell (1976) method (Stg appeared at
	5.4 min with inject 10µ1)
10d	HPLC chromatogram of Stg in the samples spiked with 100 µg and
100	extracted by Schmidt <i>et al.</i> (1980) method (Stg appeared at 5.332
	min with inject 10µl)
11	Percentage of Stg loss during the determination of spiked samples
11	by HPLC using the different methods of
	extraction
12a	Estimated cost (LE) for the different extracting
1 2 a	methods
12h	Estimated time (min) for the different extracting
120	methods
120	
13a	Densitometer chromatogram of standard Stg with 20 µl spots on
1.21.	TLC plate
130	Densitometer chromatogram of Stg in spiked wheat sample with
	5μg and extracted by AOAC (2000) method and 20 μl spots on TLC
	plate
13c	Densitometer chromatogram of Stg in spiked wheat sample with

	50μg and extracted by AOAC(2000) method and 20 μl spots on TLC plate	6
13d	Densitometer chromatogram of Stg in the spiked wheat sample with	U
	100 μg and extracted by AOAC(2000) method and 20 μl spots on TLC plate	6
14	The percentage of Stg losses during extraction by AOAC(2000) method and determination by TLC and HPLC for spiked wheat samples	6
15	HPLC chromatogram of positive wheat grains sample contaminated with $2.3\mu g/g$ of Stg (Stg appeared at 5.63 min) with inject $20\mu l$ of sample	
1.0		7
16	HPLC chromatogram fo r the Stg in balady bread (Stg appeared at 5.21 min with inject 20µl of sample	7
17	HPLC chromatogram for the Stg in the fino bread (Stg appeared at	,
	5.26 min with inject 20µl of bread sample	7
18	HPLC chromatogram for the Stg in cerelac (Stg appeared at 5.29 min with inject 20µl of cerelac sample	7
19	The incidence % of Stg in wheat, balady bread, fino bread,	
20	cerelac Distribution of Stg into commercially milled naturally contaminated	7
20	wheat fractions	8
21	Effect of bread making process on Stg reduction using naturally	
22	contaminated wheat	8
	50μg/g	8
23	Effect of lokmet el-khadi process on Sterigmatocystin residual using artificially contaminated wheat flour with different concentration of Stg (a) 5μg/g (b) 10μg/g (c) 50μg/g	
	concentration of sig (a) shig/g (b) tohig/g (c) sohig/g	