

PLATELET-DERIVED-MICROPARTICLES IN PATIENTS WITH ISCHEMIC HEART DISEASE

Thesis

Submitted For Partial Fulfillment of M.D. Degree
In Clinical Pathology

By

Nermeen Mostafa Farouge Mohammed

M.B., B.Ch., M.Sc.(Clinical Pathology)
Ain Shams University

Supervised by

Professor/ Mona Ahmed Hassan Wahba

Professor of Clinical Pathology Faculty of medicine-Ain Shams University

Professor/ Abeer Attia Saadeldin

Professor of Clinical Pathology Faculty of medicine-Ain Shams University

Doctor/ Rasha Abdel-Rahman Abdel-Latif

Assistant Professor of Clinical Pathology Faculty of medicine-Ain Shams University

Doctor/ Yasmin Nabil El-Sakhawy

Assistant Professor of Clinical Pathology Faculty of medicine-Ain Shams University

> Faculty of medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

Thanks to **Allah** first and foremost, I feel always indebted to Allah, the most kind and the most merciful.

I would like to express my gratefulness and respect to **Prof. Dr.**Mona Ahmed Hassan Wahba, Professor of Clinical Pathology, Ain Shams University, for her supervision, generous help, and extreme kindness encouragement throughout this work and great effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would also proudly notify my great honor and pleasure to work under a continuous guidance of **Prof. Dr. Abeer Attia Saadeldin,** Professor of Clinical Pathology, Ain Shams University, and to express my major debt of thanking as she spent much of her valuable time that was advocated in encouraging me and revising every detail in the study, starting from the very early steps of study design till the last word ever documented here.

My sincere gratitude and thanks to **Dr. Rasha Abdel-Rahman**Abdel-Latif, Assistant Professor of Clinical Pathology, Ain Shams
University, for continuous assistance, sincere supervision, great support
and directions, giving me the privilege of working under her supervision
which yielded this work to be accomplished.

My special thanks to **Dr. Yasmin Nabil El-Sakhawy**, Assistant Professor of Clinical Pathology, Ain Shams University, for her kind advices, valuable suggestions, her constant help, unlimited support, encouragement and for offering me much of her time and effort.

Nermeen Mostafa Farouge Mohammed

Dedication

Words cannot describe my gratefulness and gratitude to my father (mercy upon him) and mother who provided me with every mean of love, care and support throughout my life and to my elder brother **Dr. Mohammed Mostafa Farouk**, Lecturer of Cardiology, Ain Shams University, who helped me greatly in the completion of this work.

I finally wish to gift my sincere acknowledgement to my small family, of my **Dear Husband** (**Ahmed**), lovely **son** (**Yahya**) and **Daughter** (**Yasminah**) who greatly held the responsibility and were not only sharing in bearing the burden, but they also were, with their appreciated patience, the motive, the candle and the target all through my way. To whom I dedicate my pleasant success in my whole life.

List of Contents

Title	Page No.
List of Abbreviations	
List of Tables	vii
List of Figures	X
Introduction	1
Aim of the Work	4
Review of Literature	
- Ischemic Heart Disease (IHD), and Rela	ted Disorders 5
- Platelets and Platelet Microparticles	37
Subjects and Methods	90
Results	114
Master Sheet	172
Discussion	184
Study Limitations and Recommendations	201
Summary	203
Conclusion	207
References	208
Arabic Summary	

List of Abbreviations

Abb. 2-D Two-dimensional 3-D Three-dimensional 5-HT Serotonin ACC American College of Cardiology Foundation ACEIs...... Angiotensin Converting Enzyme Inhibitors ACHE Acetyl Choline Esterase Activity Assay **ACS** Acute coronary syndrome(s) ADP Adenosine 5'-diphosphate **AF.....** Atrial Fibrillation **AFM.....** Atomic Force Microscopy AHA...... American Heart Association Akt...... Ak was for a temporary classification name for a mouse that developed spontaneous thymic lymphomas: t **APCs** Antigen Presenting Cells ARBs Angiotensin Receptor Blockers AUC...... Area Under the Curve CA...... Coronary Angiography CABG...... Coronary Artery Bypass Grafting CAD...... Coronary Artery Disease CAT Calibrated Automated Thrombogram CCL12..... Chemokine L12 CD...... Cluster of Differentiation CD40L......CD 40 ligand CI......Confidence Interval CK...... Creatinine Kinase CK-MB Creatinine Kinase- MB Isoenzyme/ Fraction CMD Coronary Microvascular Dysfunction **c-mpl** Colony- Myeloproliferative Leukemia virus

cMRI contrast Cardiac Magnetic Resonance Imaging COPD...... Chronic Obstructive Pulmonary Disease

Cryo-EM Cryo-Electron Microscopy

CSA Chronic Stable Angina

CTAD......Citrate Theophylline Adenosine Dipyridamole

cTnI...... Cardiac Troponin I

Abb.

cTnT...... Cardiac Troponin T

C-X-C- motif..... Chemokine Receptor 4

DAMP Damage-Associated Molecular Pattern

DAPT Dual Antiplatelet Therapy/ Treatment

DC..... Dendritic Cell

DLS Dynamic Light Scattering

ECG..... Electro-Cardio-Gram

Echo..... Echocardiography

ELISA Enzyme-Linked Immunosorbent assay

ELS..... Electrophoretic Light Scattering

EM Electron Microscopy

EMPs..... Endothelial Microparticles

eNOS..... Endothelial Nitric Oxide Synthase

ESC European Society of Cardiology

EVs..... Extracellular Vesicles

Ex-RNAs..... Extracellular RNAs

FACS...... Fluorescence-Activated Cell Sorting

FCM Flowcytometric analysis (Flow cytometry)

FGF Fibroblast Growth Factor

FSC......Forward Scatter-based Flow cytometry

GP IIb/IIIa (CD41) Glycoprotein IIb/IIIa (namely CD41)

GP......Glycoprotein

GT...... Glanzmann Thrombasthenia

Abb.

HDL	High Density Lipoproteins
HIT	Heparin-Induced Thrombocytopenia
HIV	Human Immunodeficiency Virus
HSCT	Hematopoietic Stem Cell Transplantation
Hsp90	Heat Shock Protein 90
ICAM	Intercellular Adhesion Molecule
IHD	Ischemic Heart Disease
IL-1β	Interleukin- one beta
IL-6	
ILs	Interleukins, like IL-1β, IL-6 and IL-8
	Idiopathic Thrombocytopenic Purpura
IV Heparin	Intravenous Heparin
	Low Density Lipoproteins
LMW Heparin	Low Molecular Weight Heparin
LPS	Lipopolysaccharides
LTA	Light Transmission Aggregometry
LV	Left Ventricular
LXR	Liver-X receptor
MCP-1	Monocyte Chemoattractant Protein-1
MFI	Mean Fluorescence Intensity
MI	Myocardial Infarction
MIF	Macrophage Migration-Inhibitory Factor
mi-RNA	Mitochondrial RNA
MK	. Megakaryocytic
MK-MPs	. Megakaryocyte- Microparticles
MMPs	Monocytic Microparticles
	Mitogen-Activated Phosphokinases
MPs	_
	Messenger Ribonucleic Acid

Abb.
LDLRLow-density lipoprotein receptor
MRP Myeloid Related Protein
Multislice CT Multislice Computerized Tomography
MVD extensive Multi-Vessel Disease
NA Not Applicable
NF- κβ Nuclear Factor Kappa-Beta
NmNanometer
NO. Number
NPSS Non-Physiological Shear Stress
NSTEMI Non-ST-segment Elevated MI
NTA Nano Particle Tracking Assay
OAT Oral Anticoagulant Therapy
P2Y12ADP-Receptor
PADPeripheral Arterial Disease
PAF Platelet Activating Factor
PAMP Pattern Associated Molecular Pattern
PAMPsPlatelet- Activated Micro- particles
PARs Protease-Activated Receptors
PASPlatelet Additive Solution
PCIPercutaneous Coronary Intervention
PCRPolymerase Chain Reaction
PCSK9Proprotein convertase subtilisin-like/kexin
type 9
PDCs Plasmacytoid Dendritic Cell
PDGF Platelet-Derived Growth Factor
PETPositron Emission Tomography
PFA 100 Platelet Function Analyzer 100
PFTPlatelet Function Testing
PI3K Phosphoinositide 3 kinase

Abb.

PKB	Protein Kinase B
PLACS	Pulse Laser Activated Cell Sorter
PMNs	Polymorphonuclear
PMPs	Platelet-derived Microparticles
	Pro-Coagulant Phospholipid
	Phosphatidyl Serine
PT	Pertussis Toxin
PV	Predictive value
RA	Rheumatoid Arthritis
RANTES	Regulated on Activation normally T-cell
	Express and Secreted
RGD	Arginine-Glycine-Aspartic Acid
ROC	Receiver Operating Characteristic Curve
	Rapid Platelet Function Assay
	Resistive Pulse Sensing
RSWMA	Resting Segmental Wall Motion Abnormality
SA	
	Cell-Derived Factor-1α
	Scanning Electron Microscopy
SK	
	Systemic Lupus Eythromatosis
	Smooth Muscle Cells
ore and oyk	Non-Receptor Tyrosine Kinases and proto- oncogenes
STED	stimulated Emission Depletion Microscopy
	ST-segment Elevated MI
	Thymus- And Activation-Regulated Chemokine
I'AXA2	Thromboxane A2

Abb.

Tc ⁹⁹	Technicium scanning
TEM	Transmission Electron Microscopy
TF	Tissue Factor
TFH cells	T follicular helper cells
TIAs	Transient Ischemic Attacks
TIMI score	Thrombolysis In Myocardial Infarction Score
TLRs	Toll-like receptors
TnC	Troponin C
TNF-α	Tumor Necrosis Factor-alpha
TPA	Tissue Plasminogen Activator
Tpo	Thrombopoietin
UA	Unstable Angina
UFH	Unfractionated Heparin
VEGF	Vascular Endothelial Growth Factor
vWF	von Willebrand Factor
WB	Western Blotting
WBCs	White Blood Cells
WHO	World Health Organization
WISE	Women's Ischemic Syndrome Evaluation

List of Tables

Table No.	Title	Page No.	
Table (1):	Selected recent high-risk mechanisms of increased risk for e special consideration as regards p and treatment	ach and rognosis	.20
Table (2):	Human platelet adhesion recept complex and the corresponding cl differentiation (CD) nomenclature	or (GP) uster of	
Table (3):	The most common structural tecused in the characterization of EVs		69
Table (4):	Demographic data distribution betwand control groups		.32
Table (5):	Demographic data distribution betw subgroups.		.33
Table (6):	Demographic data distribution between subgroups.	1	.34
Table (7):	Demographic data distribution betweeroups		.35
Table (8):	Therapeutic history in the IHD subgr	roups1	.36
Table (9):	Therapeutic history in the ACS subg	roups1	.37
Table (10):	Therapeutic history among the subgroups		.38
Table (11):	Clinical risk among different IHD su	bgroups1	.39
Table (12):	Clinical follow-up results among IHD subgroups		.39
Table (13):	Lab investigations of case and	control	
	groups	1	.40
Table (14):	Lab investigations of IHD groups	1	.41
Table (15):	Lab investigations of ACS groups	1	.42
Table (16):	Timing of sampling in relation to PC	I among	
	AMI groups.	1	43

List of Cables Cont...

Table No.	Title	Page No.
Table (17):	The performance of TnI, PAN PAMPs-citrate in differentiating non-ACS cases among the IHD population.	ACS from
Table (18):	PAMPs percent activation results EDTA, and citrate sample types, studied population:	among all
Table (19):	The Spearman's correlation student PAMPs- EDTA, and citrated block among all the study population:	od samples
Table (20):	Ratio of PAMPs percent activation regards citrated/ EDTA results, the study population:	results as among all
Table (21):	Statistical comparison of demographic data between case a groups	different and control
Table (22):	Statistical comparison of demographic data between IH grou	different
Table (23):	Statistical comparison of demographic data between ACS gr	different
Table (24):	Statistical comparison of clinical r different IHD subgroups	risk among
Table (25):	Statistical comparison of clinical results among different IHD subgr	
Table (26):	Statistical comparison of lab inv between case and control groups	
Table (27):	Statistical comparison of lab involution between IHD groups	•
Table (28):	Statistical comparison of lab involution between ACS groups	153
Table (29):	Statistical relation of PMPs as	ssays and 159

List of Cables Cont...

Table No.	Title	Page No.
Table (30):	Statistical relation of PMPs assa different demographic factors, a group:	mong ACS
Table (31):	PAMPs' assays in relation to therapy, among IHD group:	GP IIb/IIIa
Table (32):	PMPs' assays in relation to sir dual anti-PLT therapy (DAT), a group:	_
Table (33):	Statistical relation of timing of s different CBC and PAMPs resu different study groups:	sampling to ults, among
Table (34):	Statistical relation of risk stradifferent demographic factors and results, among ACS group:	tification to l laboratory
Table (35):	Statistical relation of risk strat different PMPs' assay results, and AMI groups:	ification to among UA
Table (36):	Statistical relation of follow- (significant/ non-significant) to demographic factors and laborate among ACS group:	up results o different ory results,
Table (37):	Statistical relation of follow- (significant/ non-significant) to PMPs' assay results, among UA groups:	up results o different a, and AMI

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Correlation between coronary degree of occlusion and the subgroup, depending on the electr gram (ECG) changes	clinical o-cardio-
Figure (2):	Comparison between obstructive a obstructive CAD, among patients with	
Figure (3):	Classification of the subclasses ince the broad term acute coronary s (ACS), depending on the ECG find biomarkers of necrosis	yndrome ings and
Figure (4):	Different roles of platelets in ACS.	
Figure (5):	Platelet-dependent thrombus form an eroded plaque	ation on
Figure (6):	Formation of a platelet thromb sequalae into microembolization without vasoconstriction, rendering the microcirculation	ous, and n with/ ng more
Figure (7):	Adhesion receptors involved in endothelium adhesion	•
Figure (8):	A diagram showing the principles to diagnose an IHD case	
Figure (9):	The time of rise of different enzymes in relation to onset of che	
Figure (10):	Different degrees of obs necessitating different clinical prese viewed by both cross and lon- sections of the coronary artery	tructions entations; gitudinal
Figure (11):	Different treatment facilities different ACS patient subgrou different plans tailored according individual case.	p, with to each