

EXPERIMENTAL INVESTIGATION OF ENRICHED-HYDROGEN OXY COMBUSTION OF CNG FLAMES STABILIZED OVER A PERFORATED PLATE BURNER

By Samir Yahia Kamal Youssef

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mechanical Power Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

EXPERIMENTAL INVESTIGATION OF ENRICHED-HYDROGEN OXY COMBUSTION OF CNG FLAMES STABILIZED OVER A PERFORATED PLATE BURNER

By Samir Yahia Kamal Youssef

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Mechanical Power Engineering

Under the Supervision of

Prof. Dr. Tharwat Wazier Abou-Arab Dr. Abdelmaged Hafez Ibrahim

Professor of Combustion
Mechanical Power Department
Department
Faculty of Engineering
Cairo University

Assistant Professor Mechanical Power

Faculty of Engineering Cairo University

Dr. Hatem Omar Haredy

Assistant Professor
Mechanical Power Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

EXPERIMENTAL INVESTIGATION OF ENRICHED-HYDROGEN OXY COMBUSTION OF CNG FLAMES STABILIZED OVER A PERFORATED PLATE BURNER

By Samir Yahia Kamal Youssef

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in **Mechanical Power Engineering**

Approved by the Examining Committee	
Prof. Dr. Tharwat Wazier Abou-Arab,	Thesis Main Advisor
Prof. Dr. Osama Mohammed Farid Elb	ahar, Internal Examiner
Prof. Dr. Saad Abdelhameed Elsayed, - Professor of Combustion, Faculty of Engi	External Examiner neering, Zagazig University
Dr. Abdelmaged Hafez Ibrahim ,	Advisor
Dr. Hatem Omar haredy ,	Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name:** Samir Yahia Kamal Youssef

Date of Birth: 9 / 6 / 1987 Nationality: Egyptian

E-mail: samiryosef87@gmail.com

Phone: 01002317075

Address: 28 Road 10 – Maadi – Cairo - Egypt

Registration Date: 1/10/2015

Awarding Date: / /

Degree: Master of Science

Department: Mechanical Power Engineering

Supervisors:

Prof. Dr. Tharwat Wazier Abou-Arab

Dr. Abdelmaged Hafez Ibrahim

Dr. Hatem Omar Haredy

Examiners:

Prof. Dr. Tharwat Wazier Abou-Arab(Main Advisor)Prof. Dr. Osama Mohammed Farid Elbahar(Internal Examiner)Prof. Dr. Saad Abdelhameed Elsayed(External Examiner)

(Faculty of Engineering, Zagazig University)

Title of Thesis:

Experimental Investigation of Enriched-hydrogen Oxy-combustion of CNG Flames Stabilized Over a Perforated Plate Burner

Kev Words:

Flammability Limits, Oxy Combustion, Flashback, Enriched Hydrogen

Summary:

Carbon Dioxide emissions resulting from the combustion of fossil fuels in power generation industries are considered to causing global warming. This study experimentally studies the conditions that must be met when burning a mixture of compressed natural gas and hydrogen gas with an oxidizer mixture made of Oxygen and carbon dioxide gases over a perforated-plate burner. The study succeeded to achieve a stabile flame made of 0% to 30% hydrogen fraction and the flammability limits were determined in different hydrogen fractions. Also, the visual flame appearance (shape, length and color) at different oxygen and hydrogen fractions was recorded.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Samir Yahia Kamal Youssef Date: 12 / 12 / 2019

Signature:

Acknowledgment

I am in a debt gratitude to my advisors, Prof. Tharwat Abou–Arab and Dr. Abdelmaged.H.Ibrahim as well as Dr.Hatem Haredy for their guidance, support and patience throughout this research. Their trust and high expectations pushed me not only to finish this thesis but towards a new level of experience.

I am also grateful to my colleagues in measurements and calibration laboratory, especially Mr.Usama, for their support and providing me with measurement instrumentations to complete this work.

I am also thankful to Eng. Mohamed Bekheet for his support and help me in running experiments many times at the combustion laboratory, and also in finishing my thesis.

My wholehearted gratitude is to my family for their support, love, prayers and sacrifices. Their continuous encouragement throughout the years gave me the strength to reach my goals.

Finally, I'd like to say to my father, my wife Rehab and my daughter Romaysaa "Allah blesses you all".

Table of Contents

Disclai	mer	I
Acknov	wledgment	II
Table o	of Contents	III
LIST C	OF TABLES	VII
LIST C	OF FIGURES	VIII
Nomen	clature	XI
Abstrac	ct	XII
Chapte	r 1: Introduction	2
1.1	Global warming	2
1.2	Carbon dioxide emissions	4
1.3	Worldwide climate change impact	5
1.4	Oxy-fuel combustion methods for carbon capture	8
1.5	Flammability limits	9
1.	5.1 Lower flammability limit	9
1.	5.2 Upper Flammability limit	9
1.6	Flame stability mechanism over a perforated-plate burner	9
1.7	Scope of current work	10
1.	7.1 Table of Sets	12
1.	7.2 Enriched-Hydrogen Oxy-Fuel Combustion Cases	13
1.	7.3 Combustion Terms Definitions:	13
Chapte	r 2: Literature Review	15
Chapte	r 3: Experimental Setup	25
3.1	Flow diagrams	25
3.2	Perforated-plate burner	27
3.3	Operation procedure	28
3.4	Flame arrestor	29
3.5	Confinement and exhaust system	30
3.6	Fuel supply system	31
3.	6.1 CNG fuel system	31

3.6.	2 Hydrogen (H ₂) fuel system31
3.7	Oxidizer supply system31
3.8	Instrumentation
3.8.	1 Flow meters
3.9	Table of mixtures properties at different temperatures
Chapter	4: Results and discussion35
4.1	First set results of CNG/ H ₂ / O ₂ / CO ₂ experiments
4.1.	Flammability limits with equivalence ratio for O.F. = 29% and H.F. = (0% and 10%)
4.1.	Flammability limits with equivalence ratio for O.F. = 29% and H.F. = (0% and 20%)
4.1.	Flammability limits with equivalence ratio for O.F. = 29% and H.F. = (0% and 30%)
4.1. 20%	Flammability limits with equivalence ratio for O.F. = 29% and H.F. = 0%, 10%, and 30%
4.1.	5 Hydrogen Fraction versus equivalence ratio for O.F. = 29% and varied Re39
4.2	Average visual flame length measurement
4.2. 29%	11
4.2. 20%	The visual flame appearance of the outer cones and flame length for H.F. = 0% and 6 at O.F. = 29%
4.3	Second Set results 42
4.3.	Flammability limits with equivalence ratio for O.F.= 32% and H.F.= (0% and 10%)
4.3.	Flammability limits with equivalence ratio for O.F. = 32% and H.F. = (0% and 20%)
4.3.	Flammability limits with equivalence ratio for O.F. = 32% and H.F. = (0% and 30%)
4.3. 10%	Flammability limits with equivalence ratio for O.F. = 32% and H.F. = (0%, 5,20% and 30%)
4.3.	1 Hydrogen Fraction versus equivalence ratio for O.F. = 32% and varied Re
4.3. 32%	
4.3. 20%	The visual flame appearance of the outer cones and flame length for H.F. = 0% and at O.F. = 32%

4.4.1	Flammability limits with equivalence ratio for O.F. = 36% and H.F. = (0% and 10%)
7,7,1	47
4.4.1	Flammability limits with equivalence ratio for O.F. = 36% and H.F. = (0% and 20%
4.4.1 20%)	Flammability limits with equivalence ratio for O.F. = 36% and H.F. = (0%, 10% and 49)
4.4.2	Hydrogen Fraction versus equivalence ratio for O.F. = 36% and varied Re4
4.4.3 36%	The visual flame appearance of the inner cones for H.F. = 0% and 20% at O.F. =
4.4.4 20% at 0	The visual flame appearance of the outer cones and flame length for H.F. = 0% and D.F. = 36%
4.5 Co	mparison of the enriched and non-enriched-hydrogen flame length5
4.5.1	Flame length results of H.F. 0% and 20% at O.F. 29%
4.5.2	Flame length results of H.F. 0% and 20% at O.F. 32%5
4.5.3	Flame length results of H.F. 0% and 20% at O.F. 36%5
4.5.4	Visual flame appearance of flame intensity at H.F. 20% and varied O.F5
4.6 Fou	orth Set results
4.6.1 premixe	Flammability limits versus oxygen fraction at Φ = 0.85 and H.F.= 0% at fixed degree of 7 (L/D= 7)5.
4.6.2 premixe	Flammability limits versus oxygen fraction at Φ = 0.85 and H.F.= 10% at fixed degree of 7 (L/D= 7)5
4.6.3 premixe	Flammability limits versus oxygen fraction at Φ . = 0.85 and H.F.= 20% at fixed degree of 7 (L/D= 7)
4.6.4 fixed pre	Flammability limits versus oxygen fraction at Φ . = 0.85 and H.F. = 30% at emixed degree of 7 (L/D= 7)5
4.6.5 at L/D=	Summary of flammability limits versus oxygen fraction at Φ . = 0.85 and H.F. = 30% 75
4.6.6 ratio of (Visual flame flash-back occurrence sequence at H.F. 20% and constant equivalence 0.85
4.7 Adi	abatic flame temperature versus equivalence ratios and hydrogen fractions6
4.7.1 with con	ATF contours in terms of equivalence ratio and H.F. at O.F. 29%, 32% and 36% stant RE of 1157
4.7.2	ATF contours in terms of equivalence ratio and H.F. at O.F. 29%, 32% and 36% astant RE of 1480

5	Chaj	pter 5: conclusion and recommendation for future work	64
	5.1	Conclusion:	64
		Suggestions for Future Work	
		FERENCES	
		NDIX (A)	
		NDIX (B)	
		NDIX (C)	
	, I L/1	1011 (0)	13

LIST OF TABLES

- Table 3.1: Specifications of CO₂ rotameters
- Table 3.2: Specifications of CNG fuel rotameter
- Table 3.3: Specifications of H₂ fuel rotameter
- Table 3.4: Specifications of O_2 rotameter
- Table 3.5: Oxidizer mixture properties for oxygen fraction of 36% for oxy-fuel combustion
- Table 3.6: Oxidizer mixture properties for oxygen fraction of 32% for oxy-fuel combustion
- Table 3.7: Oxidizer mixture properties for oxygen fraction of 29% for oxy-fuel combustion

LIST OF FIGURES

Figure 1.1: Global mean land-ocean temperature changes from 1880–2012. [4]	2
Figure 1.2: Annual world greenhouse gas emissions, in 2005 [6]	
Figure 1.3: The increase of atmospheric carbon dioxide (CO2) concentrations from 1958–2013	[10]
Figure 1.4: U.S. Carbon Dioxide Emissions, By Source, 2007 [11]	
Figure 1.5: Projections of global mean sea level rise [15]	
Figure 1.6: The three CO2 capture processes	
Figure 1.7: The stabilization mechanism perforated-plate burner	10
Figure 2.1: Burning velocities of methane and hydrogen mixtures versus equivalence ratio. [24]	
Figure 2.2: The changes of laminar flame speed against equivalence ratios with oxygen fraction	18
vary from 0.25 to 0.8. [25]	16
Figure 2.3: Effect of hydrogen enrichment on lean blowout limit heat. [26]	
Figure 2.4: Actual model of NASA burner. [27]	
Figure 2.5: Blow out limits at various equivalence ratios and throat velocities. [27]	19
Figure 2.6: Luminosity images for confined flame. $nH_2=0.8$, $u=30$ m/s. a) $\Phi=0.6$; b) $\Phi=0.4$; c)) Ф
=0.3. [27]	20
Figure 2.7: Schematic diagram of the swirl premixed combustor. [28]	21
Figure 2.8: Flame stability mapping versus the contours of adiabatic flame temperature at const	tant
velocity of 6.0 m/s. [28]	22
Figure 2.9: Flame stability mapping versus the contours of PD at the constant velocity of 6.0 m	ı/s.
[28]	22
Figure 3.1: Flow diagram for enriched-hydrogen oxy-fuel combustion	25
Figure 3.2: Test rig, fuel system, oxidizer system and measuring instruments	
Figure 3.3: Combustion experiment schematic	
Figure 3.4: Digital image of perforated-plate burner	
Figure 3.5: Burner design schematic	
Figure 3.6: flame arrestor mechanism.	
Figure 3.7: the confinement section. [29].	
Figure 3.8: Exhaust section. [29]	
Tigure 5.6. Extiaust section. [29]	30
Figure 4.1: Flammability limits of $CNG/H_2/O_2/CO_2$ flames for O.F. 29% and H.F. (0% and 10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% and 10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% of CNG/H2/O2/CO2) flames for O.F. 29% and H.F. (10% of CNG/H2/O2/CO2/CO2/CO2/CO2/CO2/CO2/CO2/CO2/CO2	
L/D=7	
Figure 4.2: Flammability limits of $CNG/H_2/O_2/CO_2$ flames for O.F. 29% and H.F. (0% and 20% $L/D=7$	
Figure 4.3: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 29% and H.F. (0% and 30%)	
L/D=7	
Figure 4.4: Flammability limits of $CNG/H_2/O_2/CO_2$ flames for O.F. 29% and H.F. (0%, 10%, 20%) and H.F. (10%) are the control of the cont	20%
and 30%) at L/D=7	
Figure 4.5: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 29% and varied RE at L/D:	=739

Figure 4.6: Visual flame appearance of inner cones of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 29% and
H.F. (0% and 20%) at L/D=7
Figure 4.7: Visual flame appearance of outer cones of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 29% and
H.F. (0% and 20%) at L/D=7
Figure 4.8: Flammability limits of $CNG/H_2/O_2/CO_2$ flames for O.F. 32% and H.F. (0% and 10%) at $L/D=7$
Figure 4.9: Flammability limits of $CNG/H_2/O_2/CO_2$ flames for O.F. 32% and H.F. (0% and 20%) at $L/D=7$
Figure 4.10: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 32% and H.F. (0% and 30%) at L/D=7
Figure 4.11: Flammability limits of $CNG/H_2/O_2/CO_2$ flames for O.F. 32% and H.F. (0%, 10%, 20% and 30%) at $L/D=7$
Figure 4.12: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 32% and varied RE at L/D=745
Figure 4.13: Visual flame appearance of inner cones of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 32% and H.F. (0% and 20%) at L/D=7
Figure 4.14: Visual flame appearance of outer cones of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 32% and H.F. (0% and 20%) at L/D=7
Figure 4.15: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 36% and H.F. (0% and 10%) at L/D=7
Figure 4.16: Flammability limits of $CNG/H_2/O_2/CO_2$ flames for O.F. 36% and H.F. (0% and 20%) at $L/D=7$
Figure 4.17: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 36% and H.F. (0%, 10% and 20%) at L/D=7
Figure 4. 18: Flammability limits of CNG/H2/O2/CO2 flames for O.F. 36% and varied RE at L/D=7
Figure 4.19: Visual flame appearance of inner cones of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 36% and H.F. (0% and 20%) at L/D=7
Figure 4.20: Visual flame appearance of outer cones of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 36% and H.F. (0% and 20%) at L/D=7
Figure 4.21: Visual flame length comparison of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 29% at H.F. 0% and 20%
Figure 4.22: Visual flame length comparison of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 32% at H.F. 0% and 20%
Figure 4.23: Visual flame length comparison of CNG/H ₂ /O ₂ /CO ₂ flames for O.F. 36% at H.F. 0% and 20%
Figure 4.24: Visual CNG/ $H_2/O_2/CO_2$ flame appearance of O.F. = 29%, 32% and 36% at a constant Φ =0.8 and H.F.=20%
Figure 4.25: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for variable O.F., constant equivalence ratio and H.F. 0% at L/D=7
Figure 4.26: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for variable O.F., constant equivalence ratio and H.F. 10% at L/D=7
Figure 4.27: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for variable O.F., constant equivalence ratio and H.F. 20% at L/D=7

Figure 4.28: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for variable O.F., constant equivalence
ratio and H.F. 30% at L/D=757
Figure 4.29: Flammability limits of CNG/H ₂ /O ₂ /CO ₂ flames for variable O.F., constant equivalence
ratio and H.F. (0%, 10%, 20% and 30%) at L/D=758
Figure 4.30: Visual inner CNG/H ₂ /O ₂ /CO ₂ flame appearance of flash-back sequence for H.F. 20%
and $\Phi = 0.85$
Figure 4.31: Visual outer CNG/H ₂ /O ₂ /CO ₂ flame appearance of flash-back sequence for H.F. 20%
and $\Phi = 0.85$
Figure 4.32: Adiabatic flame temperature contour with hydrogen fraction and equivalence ratio at
O.F. 32% and RE = 128060
Figure 4.33: Adiabatic flame temperature contour with hydrogen fraction and equivalence ratio at
O.F. 29% and RE = 128060
Figure 4.34: Adiabatic flame temperature contour with hydrogen fraction and equivalence ratio at
O.F. 36% and RE = 128061
Figure 4.35: Adiabatic flame temperature contour with hydrogen fraction and equivalence ratio at
O.F. 32% and RE = 148061
Figure 4.36: Adiabatic flame temperature contour with hydrogen fraction and equivalence ratio at
O.F. 29% and RE = 148061
Figure 4.37: Adiabatic flame temperature contour with hydrogen fraction and equivalence ratio at
O.F. 36% and RE = 1480

Nomenclature

AFT	Adiabatic Flame Temperature
CNG	Compressed Natural Gas
CCS	Carbon Capture and Sequestration
FGR	Fuel Gas Recirculation
H.F.	Hydrogen Fraction
HRSG	Heat Recovery Steam Generator
IGCC	Integrated Gasification Combined Cycle
LEL	Lower Extinction Limit
LFL	Lower Flammability Limit
L/D	Degree of Premixing (the ratio between the pipe length L to its mean diameter D)
MEM -	,
MFMs	Mass flow Meter
m°	Oxidizer Mass Flow Rate
NGCC	Natural Gas Combined Cycle
nH ₂	Number of moles of hydrogen divided by number of moles of both of
	hydrogen and methane.
NIS	National Institute of Standards
O.F.	Oxygen Fraction
Re	Reynolds Number
RFG	Recycled Flue Gases
UFL	Upper Flammability Limit

Greek symbols

Ø: Equivalence ratio Λ: Excess air factor