Molecular Biology of Leukemia

Thesis

Submitted for Partial Fulfilment of Master Degree in Clinical Pathology

By Iman Farouk Ghanem M.B., B.Ch.

Supervisors

PROF. DR. OSAIMA SELIM

Professor Of Clinical Pathology Faculty of Medicine Ain Shams University

PROF. DR. SALWA M.YOUSEF

Professor Of Clinical Pathology Faculty of Medicine Ain Shams University

DR. SALWA MOHAMED ABOU EL-HANA

Lecturer of Clinical Pathology Faculty of Medicine Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

1991

بسخ له الرحد لاميح و قل رسين أو المن المعلم المستح له المنظم المستح المنظم المن

ACKNOWLEDGEMENT

I am greatly indebted to Professor DR. OSAIMA SELIM for her helpful guidance, useful advice, and continuous encouragement. She gave me much of her valuable experience that helped much in this review.

I would like also to express my deep appreciation to Professor DR. SALWA YOUSSEF for her honest supervision, her careful reading of the draft and encouragement through out the course of this work.

I am also greatly indebted to DR. SALWA ABO EL HANA for her great help, patience and her fruitful advices that she gave me so friendly and generously. The great effort and time she spent with me are all greatly appreciated.

Finally, I would like to record my gratefullness to my WHOLE FAMILY for their great support and patience, to get the best possible results.

LIST OF ABBREVIATIONS

AIDs : Acquired immunodeficiency syndrome.

ALL : Acute lymphocytic leukemia. AMV : Avian myeloblastic virus.

ANLL : Acute nonlymphocytic leukemia.

ATL: Adult T-cell leukemia.

bel : B-cell lymphoma leukemias.

BCR: Breakage cluster region.
CALLA: Common ALL antigen.

CGL: Chronic granulocytic leukemia.
CLI: Chronic lymphocytic leukemia.
CML: Chronic myelogenous leukemia.

c-oncs : Cellular oncogenes.

C-SF : Colony stimulating factor.

del : Deletion.

DMS : double minutes. EBV : Epstein-Barr virus.

EBVNA: Epstein-Barr virus nuclear antigen.
FAB: French American British Company.
HSR: Homogenously staining regions.
HTLV: Human T-cell lymphotropic virus.

i : Isochromosome.

Ig : Immunoglobulin.

IgH : Immunoglobulin heavy chain.
IgL : Immunoglobulin light chain.

inv. : inversion. kb. : Kilobase pairs.

MuLV: Murine leukemia virus.

PCNA : Proliferating cell nuclear antigen.

PCR : Polymerase chain reaction.
PFG : Pulsed field gradiant gels.

Ph' : Philadelphia.

PHA: Phytohemaglutinin

PPO : Pluripoietin.

RFLP : Restriction fragment length polymorphism.

t : Translocation.
TCR : T-cell receptor.

TdT : Terminal deoxy transferase.

v-oncs : viral oncogens.

Contents

•	INTRODUCTION AND AIM OF THE WORK	1
•	INTRODUCTION TO MOLECULAR BIOLOGY AND ITS SIGNIFICANCE	3
	Genetic Principles and Molecular genetics Immune Diversity The Cell Cycle and Cell Cycle Genes	
•	THE MOLECULAR BIOLOGY OF LEUKEMIA	28
•	Etiological and Pathogenetic Mechanisms of Leukemia * Etiology of leukemia * Pathogenesis of Leukemia	28
•	CLASSIFICATION OF LEUKEMIA AT THE MOLECULAR LEVEL	54
	Acute Leukemia * Acute lymphocytic leukemia * Acute nonlymphocytic leukemia	54 56 62
	Chronic Leukemia * Chronic lymphocytic leukemia * Chronic mylogenous leukemia	
•	METHODS OF CYTOGENETIC ANALYSIS AND ITS APPLICATION IN	
	DIAGNOSIS OF LEUKENIA	81
•	PROGNOSTIC SIGNIFICANCE OF CYTOGENETIC ABNORMALITIES IN	
	LEUKEMIA	109
•	SUMMARY AND CONCLUSION	115
•	REFERENCES	1

ARABIC SUMMARY

Introduction & Aim of the Work

Introduction And Aim Of The Work

1111111111

Leukemia, indeed cancer in general, is a disorder of growth and proliferation that occurs when the normal function of one or more of growth affecting genes disrupted.

The mechanisms by which these gene disruptions may occur are not just of intellectual interest, but of profound clinical import as well, because it is now becoming clear that one or more of these disruptions have occurred in every patient with cancer (Kirsch, 1988).

The tumor-specific markers, that would distinguish a tumor cell from the normal cell background, in which it arises, are precisely the specific genetic alterations which occur at the level of DNA within cancerous cells. Most importantly is the DNA rearrangement of immunoglobulin gene creates a tumor specific marker capable of establishing the clonality cellular lineage, and stage of development of hematologic malignancy (Bishop, 1985).

Oncogenes are genes coding for proteins in malignant transformation. Classically defined "oncogenes", cancer causing genes carried in the genome of certain tumor viruses (Bishop, 1985), exist as cellular homologues "proto-oncogenes" withmormal human DNA (kirsch, 1988).

In light of a possible pathogenetic significance of proto-oncogenes for the development of cancer special attention has been paid to the normal function of the proteins coded for by the proto-oncogenes. These proteins were found to be involved in an information pathway from the cell surface to cell nucleus, which regulates cell growth and differentiation (Bjergaard et al., 1986).

The techniques of molecular biology involve the analysis, or manipulation of DNA, RNA and protein at the molecular level (Worwood and Wagstaff, 1990). These molecular genetic analysis hold the promise of improving the classification schemes, providing sensitive and specific approaches, following the clinical course and providing in sights in pathogenesis that will prompt improved therapy (Korsmeyer, 1988).

This study aimed to review some of the important concepts and techniques of molecular biology applied to the field of leukemia.

Introduction to Molecular Biology and its Significance

Introduction To Molecular Biology And Its Significance

Two decades ago concepts were developed to exploit cell kinetic differences of normal and malignant cells to selectively damaged cancer cells (Klein et al., 1976).

Today an increased understanding of the biology of cell division is emerging in the context of growth regulation by growth factors and specific genes (Pardee et al., 1985; Baserga, 1986).

A few years ago it was simpler to conceive an article devoted to the impact of molecular biology on the diagnosis, understanding and treatment of the leukemia. Then it may have still been possible to distinguish a separate field of molecular biology distinct from other fields and branches of medicine (Kirsch, 1988)

Genetic Principles and Molecular Genetics

All the information required for the development of a complete adult organism are contained in a single cell the zygote. It contains the information required for the formation of cells, the regulation of their proliferation, their assembly into tissues and the development of these tissues into organs. Understanding how this massive amount

of information are coded has been one of the major advances of modern biology. The information are all contained in polynucleotides, deoxyribonucleic acid (DNA) (Beutler, 1990).

Structure of the DNA (Fig. 1 and 2)

The DNA contains only four different bases Adenine (A) Guanine (G), Thymidine (T), and Cytosine (C). DNA exists as a double helix in which A is always paired with T, and G is always paired with C. The nucleotides that make up each strand are linked to each other through a molecule of phosphoric acid, attached to the 3' carbon of the deoxyribose of one nucleotide and to the 5'carbon of the next one (Beutler, 1990).

A linear strand of DNA then, has one end in which the hydroxyl group attached to 5' carbon is free at the other end it is hydroxyl group to the 3'carbon that is not involved in a link. The 5' end is drawn on the left and is called up stream end, and the 3'end called downstream. The two strands form a stable double-stranded helix only when they are arranged in an anti-parallel fashion. In other words, one strand in the 3'5'polarity is bound to its complementary strand with a 5'3' polarity (Maxam and Gilbert 1977; Barrie et al., 1981).

The two complementary strands of DNA are stabilized in a double helical configuration by the formation of hydrogen bonds between the nucleotides on the opposing strands (Kirsch, 1988).

Fig. (1): Chemical Structure of Deoxyribonucleic Acid (High and Benz, 1985)

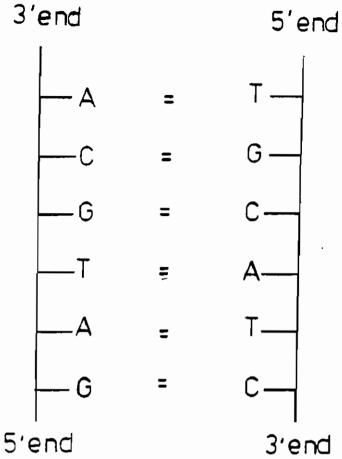


Fig. (2): Complementary Base-Pairing (High and Benz, 1985)
(A = T or U, G = C)

Organization of DNA Molecules into Genes

Virtually, eukaryotic and prokaryotic species differ significantly in the manner in which DNA sequences are organized into functional units which are called genes (High and Benz, 1985).

This means that eukaryotic cells contain their DNA within the nucleus in the form of nucleoprotein complexes called chromosomes. Human cells contain 23 pairs of chromosome all available evidence suggests that each chromosome consists of a single, long molecule of DNA. The

sequence of information in DNA is organized along these very long molecules in form of discrete units which are called genes separated by long stretches which do not code for protein (Hosbach et al., 1983).

Structure of the Chromosome (Fig. 3)

In somatic cells chromosomes are present in pairs, one pair of sex chromosomes (two x chromosomes in females and an x and a y in males) and in humans, 22 pairs of autosomes (Beutler, 1990).

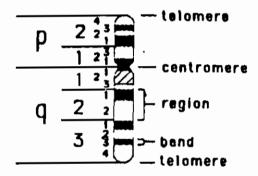


Fig. (3): (Le Beau and Rowley, 1990)

Each chromosome has a long arm (or q) and a short (or p) arm separated by a primary constriction, the centromere. Each chromosome arm is divided into regions and subregions based on the band and numbered from the centromere out towards the ends (telomeres). Thus 11q23, as an example, is on long arms of chromosome 11, region 2, subregion 3 (Secker-Walker and Goldman, 1989).

Glossary (After Le Beau and Rowley, 1990)

Centromere The constriction along the length of the chromosome that is the site of the spindle fiber attachment.

Karyotype Arrangement of chromosomes from a particular system such that the largest chromosomes are first and the smallest ones are last. Normal female karyotype is 46, XX; normal male karyotype is 46, XY.

Translocation A break in at least two chromosomes with exchange of material; in a reciprocal translocation, there is no obvious loss of chromosomal material. Translocations are indicated by t; the chromosomes involved are noted in the first set of brackets and the breakpoints in the second set of brackets.

Deletion

A segment of a chromosome is missing as the result of a single break (terminal deletion), or two breaks and loss of the intervening piece (interstitial deletion).

Inversion

Two breaks occur in the same chromosome with rotation of the intervening segment. If both the breaks are on the same side of the centromere it is called a paracentric inversion. If they are on opposite sides it is called a pericentric inversion.