

DESIGN AND EXPERIMENTAL VALIDATION OF SUBSPACE PREDICTIVE CONTROL

By

Abdallah Fawzy Abd El-Fattah Hassan El Hamalawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

DESIGN AND EXPERIMENTAL VALIDATION OF SUBSPACE PREDICTIVE CONTROL

By

Abdallah Fawzy Abd El-Fattah Hassan El Hamalawy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Ahmed Bahgat Gamal Bahgat	Prof. Dr. Hassan Mohammed Rashad	
Electrical Power and Machines Department Faculty of Engineering, Cairo University	Electrical Power and Machines Department Faculty of Engineering, Cairo University	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

DESIGN AND EXPERIMENTAL VALIDATION OF SUBSPACE PREDICTIVE CONTROL

By

Abdallah Fawzy Abd El-Fattah Hassan El Hamalawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the
Examining Committee
Prof. Dr. Ahmed Bahgat Gamal Bahgat, Thesis Main Advisor
Prof. Dr. Hassan Mohammed Rashad, Advisor
Prof. Dr. Hassen Taher Dorrah, Internal Examiner
Prof. Dr. Fahmy Metwally Ahmed Bendary, External Examiner
Shoubra – Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name:** Abdallah Fawzy Abd El-Fattah Hassan

Date of Birth: 07/12/1992 **Nationality:** Egyptian

E-mail: af.hamalawy@gmail.com

Phone: 01148793506

Address: 183 Ahmed Zaki St.- Maadi

Registration Date: 01/03/2017 **Awarding Date:** / /2019

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Ahmed Bahgat Gamal Bahgat Prof. Dr. Hassan Mohammed Rashad

Examiners:

Porf. Dr. Ahmed Bahgat Gamal Bahgat (Thesis main advisor)

Porf. Dr. Hassan Mohammed Rashad (Advisor)

Prof. Dr. Hassen Taher Dorrah (Internal examiner)
Prof. Dr. Fahmy Metwally Ahmed Bendary (External examiner)

(Shoubra – Benha University)

Title of Thesis:

DESIGN AND EXPERIMENTAL VALIDATION OF SUBSPACE PREDICTIVE CONTROL.

Key Words:

Predictive Control; Subspace Identification; Data Driven Control; Process Control

Summary:

This Thesis studies different subspace identification techniques and its corporation with predictive control to introduce a subspace predictive controller (SPC). Furthermore, it investigates the combination of this controller with adaptation algorithm to develop an Adaptive version of Subspace Predictive Control which has the ability to deal with time varying and nonlinear processes. SPC is proved as a competitive replacement for conventional MPC as it avoids system's states measurement and hence avoids the need for state observer and its design. Instead, SPC predicts the output based on a bank of collected input and output data in a manner similar to Generalized Predictive Control (GPC) but can be extended to deal with MIMO systems based on a nonparametric model. Finally, the algorithm has been validated experimentally and applied to two benchmark systems. Servomechanism and Level Control Process. The obtained results are promising.

Disclaimer

I hereby declare that this thesis is my own or submitted for a degree qualification at any of	
I further declare that I have appropriately ack them in the references section.	knowledge all sources used and have cited
Name:	Date:
Signature:	

Acknowledgments

First of all thanks to ALLAH (Almighty) who strengthens me and supports me all over my life and during this thesis work.

I would like to express my gratitude and my deep thanks to Prof. Ahmed Bahgat for his valuable suggestions, useful notices and his wise supervision. I think that his constant concern, dedicated help and encouragement are of the major causes that helped me to finish this work.

I would like to express my thanks and admiration to Prof. Hassan Rashad for his fundamental support to make this work done. His organized thoughts and technical comments have improved this work significantly.

Finally, I would like to thank all the staff of Automatic Control Group-Electrical Power and Machines Department- Faculty of Engineering- Cairo University.

Dedication

To my inspiring parents, who never stop giving of themselves in countless ways

Table of Contents

DISCLAIME	R	I
ACKNOWLE	EDGMENTS	II
DEDICATIO	N	III
TABLE OF C	CONTENTS	IV
LIST OF TAI	BLES	VI
LIST OF FIG	SURES	VII
NOMENCLA	TURE	IX
ABSTRACT.		XI
CHAPTER 1	: INTRODUCTION	1
1.1.	Literature Survey	1
1.1.1.	Model Predictive Control (MPC)	1
1.1.2.	Subspace Predictive Control (SPC)	2
1.1.3.	MPC and SPC Applications	3
1.2.	MOTIVATION	4
1.3.	Objectives	
1.4.	THESIS ORGANIZATION	
	ATION ALGORITHMS	
2.1.	MPC STRUCTURE	
2.1.1.	MPC Philosophy	5
2.1.1.1. 2.1.1.2.	Output Prediction	
2.1.1.2.	Receding Horizon Principle	
2.1.2.	MPC Calculations	7
2.2.	SUBSPACE IDENTIFICATION ALGORITHMS	8
2.2.1.	Geometrical Tools	9
2.2.1.1.	Orthogonal Projection	9
2.2.1.2.	Oblique Projection	
2.2.2.	Subspace Identification of Deterministic Systems	10
2.2.2.1. 2.2.2.2.	Construction of Matrix Subspace Equations	
.2.2.3	Deterministic Identification Algorithm Subspace Identification of Combined Systems	13
2.2.3.1.	Biased Combined Algorithm	
2.2.3.1.	Unbiased Combined Algorithm.	
2.2.3.3.	Comparison between Biased and Unbiased Identification	
2.3.	NUMERICAL EXAMPLE	17
2.3.1.	Plant MPC	18
2.3.2.	Plant Model Estimation	19
2.4.	CONCLUDING REMARKS	21

CHAPTER 3	SUBSPACE PREDICTIVE CONTROL	22
3.1.	CONVENTIONAL SPC	22
3.1.1.	Philosophy of Conventional SPC	22
3.1.2.	Conventional SPC Algorithm	22
3.1.2.1.	Step 1: Offline Nonparametric Identification	22
3.1.2.2.	Step 2: Online Output Prediction	23
3.1.2.3.	Step 3: Construction of the Cost Function	
3.1.2.4.	Step 4: Inclusion of integral action to cost function	
3.1.2.5.	Step 5: Inclusion of Input & Output Constrains	
3.2.	ADAPTIVE SPC	
3.2.1.	Mathematical Prefaces	25
3.2.1.1.	RQ Factorization	
3.2.1.2.	Givens Rotation (GR)	
3.2.2.	Adaptive SPC Algorithm	27
3.2.2.1.	Inclusion of New Input and Output Data	
3.2.2.2. 3.3.	Updating R Factor	
3.3.1.	SPC and MPC of Time Invariant System	28
3.3.2.	SPC and ASPC of Time Varying System	30
3.4.	CONCLUDING REMARKS	34
CHAPTER 4	EXPERIMENTAL VALIDATION	35
4.1.	DC SERVOMECHANISM	35
4.1.1.	Setup Description	35
4.1.2.	Subspace Identification	36
4.1.3.	Comparison between MPC and SPC	40
4.1.4.	Comparison between SPC and ASPC	42
4.2.	Level Process	
4.2.1.	Setup Description	43
4.2.2.	Subspace Identification	44
4.2.3.	<u>.</u>	48
	Comparison between MPC and SPC	
CHAPTER 5	: CONCLUSIONS AND FUTURE WORK	52
5.1.	Conclusions	52
5.2.	RECOMMENDATIONS AND FUTURE WORK	52
APPENDIX A	: MATLAB CODES	57

List of Tables

Table 2.1: Comparison between Models obtained using different SID Techniques	21
Table 3.1: Controller parameters and results summary of SPC and ASPC for both	
Biased and exact offline Identification Tests	33
Table 4.1: Comparison between servo models obtained using different SID technique	
Table 4.2: Controller parameters and results summary of Servo System	41
Table 4.3: Controller parameters and results summary of servomechanism using SPC	
and ASPC	43
Table 4.4: Comparison between level process models obtained using different SID	
techniques	45
Table 4.5: Controller parameters and results summary of level process	51

List of Figures

Figure 2.1: MPC block diagram	5
Figure 2.2: Receding horizon principle	
Figure 2.3: Difference between classical and SID techniques	8
Figure 2.4: Principle of orthogonal projection	
Figure 2.5: Principle of oblique projection	
Figure 2.6: Oblique projection of future output Hankel matrix into past data and futur	
input directions [2]	13
Figure 2.7: Comparison between decomposition of the estimated output Z i in biased	
state sequence <i>Xi</i> and unbiased state sequence <i>Xi</i> directions	
Figure 2.8: Step response of the Plant <i>Gp</i>	
Figure 2.9: Plant response and control action	
Figure 2.10: Responses of Identified Models vs. Real Plant's Training Data	
Figure 2.11: Responses of Identified Models vs. Real Plant's Validation Data	
Figure 3.1: SPC structural block diagram	
Figure 3.2: Structure of adaptive SPC	
Figure 3.3: Optimized algorithm for Updating R factor	
Figure 3.4: Comparison between responses obtained from MPC and SPC	29
Figure 3.5: Comparison between responses obtained from observer based MPC and	20
SPC	
Figure 3.6: Open loop step responses of System 1 and System 2	
Figure 3.7: Tracking performance of SPC and ASPC when there is a mismatch between the street and the perhaps and add disprised model.	
1	
Figure 3.8: Tracking performance of SPC and ASPC with exact offline identification Figure 4.1: DC Servo motor experimental setup connections	
Figure 4.2: Servo model identification setup	
Figure 4.3: Servo identified models' responses vs. Servo plant's training data	
Figure 4.4: Servo identified models' responses vs. Servo plant's training data	
Figure 4.5: Comparison between simulation responses obtained from observer based	
	40
Figure 4.6: Comparison between real servo system's responses obtained using observ	-
	41
Figure 4.7: Comparison between reference tracking of servomechanism using SPC ar	
ASPC	
Figure 4.8: Level experimental setup connections	
Figure 4.9: Simplified level station schematic diagram	
Figure 4.10: Level process identified models' responses vs. Real process's training da	
Figure 4.11: Level process identified models' responses vs. Real process's validating	
data	
Figure 4.12: Comparison between simulation responses obtained from observer based	
MPC and SPC of level process	
Figure 4.13: Comparison between real process' responses obtained using observer	
based MPC and SPC of level process	49
Figure 4.14: Disturbance rejection in level process with step flow out disturbance at t	
130 s using observer based MPC and SPC	

Figure 4.15: Close up figure of disturbance rejection in level process with step flo	w out
disturbance at $t = 130 s$ using observer based MPC and SPC	5

Nomenclature

Symbols

General

u	System input
N_o	Prediction horizon
N_u	Control horizon
r_f	Reference trajectory
u_{min}	Minimum control action limit
u_{max}	Maximum control action limit
RR	Control action weight matrix
QQ	State weight matrix
n	System order

Model Predictive Control

A_m , B_m , C_m	Actual system state, input, and output matrices
A_{aug} , B_{aug} , C_{aug}	Augmented system state, input, and output matrices
x_m	Actual system states
\mathcal{Y}_m	Actual system output
\boldsymbol{x}	Augmented system states
y	Augmented system output

Subspace Identification

A, B, C, D	Actual system state, input, output, and direct matrices
i	First estimation of system order
j	Number of identification data samples
0	Oblique projection
x^d	Deterministic system states
x^s	Stochastic system states
\boldsymbol{x}	Combined deterministic – stochastic system states
y^d	Deterministic system output
y^s	Stochastic system output
у	Combined deterministic – stochastic system output
U_p	Block Hankel input past data matrix
U_f	Block Hankel input future data matrix
Y_p	Block Hankel output past data matrix
$\dot{Y_f}$	Block Hankel output future data matrix
W_p	Block Hankel input and output past data matrix
$W_p \ X_p^d$	Past deterministic state sequence

Subspace Identification Cont.

X_f^d	Future deterministic state sequence
$ ilde{ ilde{X}}$	Biased estimated state sequence
\widehat{X}	Unbiased estimated state sequence
Γ	Extended observability matrix
H^d	Lower block triangular Toeplitz matrix
Δ^d	Reversed extended controllability matrix
•†	Pseudo inverse operator

Subspace Predictive Control

\widehat{Y}_f	Estimated block Hankel output matrix
u_p	One column of past input block Hankel matrix
u_f	One column of future input block Hankel matrix
y_p	One column of past output block Hankel matrix
$\hat{\hat{y}}_f$	One column of estimated future output block Hankel matrix
$\dot{y_t}$	System output at time <i>t</i>
L_{w}	Past data prediction matrix
L_u	Future input prediction matrix
\overline{L}_w^u	Past data prediction matrix with inclusion of integral action
S_{ou}	Future input prediction matrix with inclusion of integral action
RQ	RQ factorization
ΦW_p	Added past input output column to block Hankel matrix
ΦU_f	Added future input column to block Hankel matrix
ΦY_f	Added future output column to block Hankel matrix

Abbreviations

MPC	Model Predictive Control
GPC	Generalized Predictive Control
SID	Subspace Identification
SIM	Subspace Identification Methods
SPC	Subspace Predictive Control
ASPC	Adaptive Subspace Predictive Control
GR	Givens Rotation

Abstract

This thesis aims to design and experimentally validate different approaches of Model Predictive Control (MPC) and focus on subspace based MPC or in other words Subspace Predictive Control (SPC). SPC provides a control technique that is based on predicting the output via nonparametric Subspace Identification (SID). Therefore, the thesis compares between different SID methods and also between conventional MPC and the proposed SPC techniques.

SPC is a competitive replacement for conventional MPC as it avoids system's states measurement and hence avoids the need for state observer and its design. Instead, SPC predicts the output based on a bank of collected input and output data in a manner similar to Generalized Predictive Control (GPC) but can be extended to deal with MIMO systems based on a nonparametric model. Hence, it is also called Data Driven Predictive Control. An adaptation technique is also provided to eliminate model mismatch and uncertainty. The adaptation technique is based on further identification under closed loop if the error between predicted output and measured output exceeded a predefined tolerance.

The different SID techniques are applied to two benchmark systems the first is an open loop unstable system (DC Servo system) which requires identification under closed loop. The second system is a level control setup associated with industrial actuators and sensors. SPC is also applied to both systems and presented promising performance. This thesis is one step forward towards validating the new predictive control techniques in subspace frame work experimentally so it can be provided as an industrial viable predictive control technique.