GENOTYPING OF GROWTH PERFORMANCE GENES IN SOME LOCAL SHEEP BREEDS

By

SHERIF AWAD AZIZ MELAK

B. Sc. Agric. Sc. (Animal Production), Assiut University, 2002 M. Sc. Agric. Sc. (Animal Production), Assiut University, 2010

A Thesis Submitted in Partial Fulfillment
Of
The requirements for the Degree of

in Agricultural Sciences (Animal Breeding)

Department of Animal Production
Faculty of Agriculture
Ain Shams University

Approval Sheet

GENOTYPING OF GROWTH PERFORMANCE GENES IN SOME LOCAL SHEEP BREEDS

By

SHERIF AWAD AZIZ MELAK

B. Sc. Agric. Sc. (Animal Production), Assiut University, 2002 M. Sc. Agric. Sc. (Animal Production), Assiut University, 2010

This thesis for Ph.D. degree has been approved by:

Dr.	Ali Attia Nigm
	Prof. Emeritus of Animal Breeding, Faculty of Agriculture, Cairo
	University
Dr.	Abdel-Haleem Anies Ashmawy
	Prof. Emeritus of Animal Breeding, Faculty of Agriculture, Ain
	Shams University
Dr.	Manal Mohamed Ahmed Sayed
	Professor of Animal Breeding, Faculty of Agriculture, Ain Shams
	University

Date of examination: 28 / 9 / 2019

GENOTYPING OF GROWTH PERFORMANCE GENES IN SOME LOCAL SHEEP BREEDS

By

SHERIF AWAD AZIZ MELAK

B. Sc. Agric. Sc. (Animal Production), Assiut University, 2002M. Sc. Agric. Sc. (Animal Production), Assiut University, 2010

Under the supervision of:

Dr. Manal Mohamed Ahmed Sayed

Professor of Animal Breeding, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Hussein Mostafa Kamal Mansour

Professor Emeritus of Animal Breeding, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Mona Abdel-Zaher Ahmed Osman

Head Researches of Animal Breeding, Sheep and Goat Breeding Research Department, Animal Production Research Institute (APRI), Agriculture Research Center (ARC), Ministry of Agriculture and Land Reclamation (MALR)

ABSTRACT

Sherif Awad Aziz Melak: Genotyping of Growth Performance Genes in Some Local Sheep Breeds, Unpublished PhD of Agriculture Sciences Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2019.

This study aimed to investigate possibilities of utilizing both quantitative and molecular genetics tools for genetic improvement of growth performance in Egyptian Barki and Rahmani sheep. Estimate genetic parameters of body weights using random regression model as one of quantitative genetic tools was the first objective of this study. The second objective was discovering and genotyping some single nucleotide polymorphism (SNP) as a method of molecular genetics. In addition, to study some non-genetic factors affecting sheep body weights.

Records of 3,205 and 13,215 Egyptian Barki and Rahmani lambs were collected from Borg Al-Arab and El-Serw experimental farms belonged to Animal Production Research Institute, respectively. Data were collected from 1984 to 2017 for Barki and from 1972 to 2017 for Rahmani lambs. Data were utilized to estimate (co)variance components and genetic parameters for body weights from birth up to 480 days by the average information REMLF90 (AIREMLF90) software using random regression model with Legendre polynomials (LP). Also, the effects of gender, type of birth, season of birth, year of birth, age of dam at lambing and some of the interactions between those effects on body weights were studied.

Nine candidate SNPs were selected according to individual-based on coefficient of genetic variation (F_{st} values) and the genes that have possible association with growth harboring those SNPs of previous study on Barki lambs. A total of 47 Barki and 40 Rahmani lambs, born in the period from 2013 till 2015 in two generations were utilized to genotype single nucleotide polymorphism. Genomic DNA was extracted from

blood using the salting out extraction technique. Allele Specific Polymerase Chain Reaction (AS-PCR) was used for genotyping in both breeds

The results showed that the effect of all fixed factors and some interactions were significant for all studied traits (P < 0.05) in both breeds except the effect of season of birth at 4wt in Barki and 18wt in Rahmani and the effect of age of dam at 7wt, 17wt and 18wt in Barki lambs. Direct and total heritabilities were generally low to high, ranged from 0.05 to 0.41 and from 0.08 to 0.75 in Barki lambs and from 0.04 to 0.36 and from 0.10 to 0.70 in Rahmani lambs for four months and birth weights, respectively. Heritability trend took three stages: in the beginning, h² values had a sharp decline from birth to four months of age followed by a gradual increase to ten and twelve months of age for Barki and Rahmani lambs, respectively, and eventually decreased again to sixteen months of age in both breeds. Additive, genetic and phenotypic correlation coefficients were the lowest between birth weight with other studied traits in both breeds and the highest between weight at ten months of age in Barki and weight at twelve months of age in Rahmani lambs with other studied traits. Therefore, ten and twelve months of age are recommended to be the best criterion for selecting Egyptian Barki and Rahmani lambs for meat production, respectively.

For nine candidate SNPs, no PCR amplicon obtained for SNP3 and SNP7 in either breed. SNP1, SNP2, SNP8 and SNP9 showed only two genotypes that non-significant effect for all body weights in both breeds. Only SNP4, SNP6 and SNP10 showed significant association with some body weights in both breeds. SNP4 showed significant association with body weights from 1wt to 11wt and from 5wt to 18wt in Barki and Rahmani lambs, respectively. SNP6 was significantly associated with body weights from 12wt to 14wt and from 13wt to 18wt in Barki and Rahmani lambs, respectively. SNP10 was significantly associated with body weights from 10wt to 15wt and from 4wt to 9wt in Barki and

Rahmani lambs, respectively. The three significant SNPs were found to be located on or close to three genes that may be associated with body weights and growth performance. SNP4 was downstream *DPYSL5* gene, SNP6 was located within *CYFIP2* gene and SNP10 was located within *SCARB1* gene. Allele A (0.97) and genotype AA (93.3) had the highest frequency, while allele G (0.03) and genotype AG (6.7) had the lowest frequency for SNP2 in Rahmani breed. Results confirmed consistency with Hardy-Weinberg equilibrium for SNP2, SNP4, SNP6, SNP8 and SNP9 in both breeds, while was found to deviate from HWE for SNP1 and SNP10 (*P*<0.01). Therefore, the three SNPs are recommended to use as genetic markers for selecting Egyptian Barki and Rahmani lambs for mutton production.

Key words: Barki and Rahmani sheep, growth performance, genetic parameters and non-genetic factors, Random regression model, single nucleotide polymorphism.

ACKNOELEDGEMENT

First and foremost, all praises are to **Almighty Allah** for giving me good health, mental stability, physical strength, the gift of life, sincere love of my professors and colleagues and patience to complete this study.

I wish to sincerely appreciate several institutions and persons who in one way or another opened doors and answered my incessant questions in the quest for knowledge that culminated in successful completion of this study. I thank Ain Shams University's Graduate School and Department of Animal production for the opportunity to pursue postgraduate studies. I am indebted to Animal Production Research Institute (APRI) for allowing me to use their animals and data.

I would like to express sincere gratitude and appreciation to my supervisor **Dr. Manal El-Sayed**, Prof. of Animal Breeding, Animal Production Department, Faculty of Agriculture, Ain Shams University, for her guidance, effort, assistance and support in my work to complete the study.

Sincere gratitude and appreciation to **Dr. Hussein Mansour**, Prof. Emeritus of Animal Breeding, Animal Production Department, Faculty of Agriculture, Ain Shams University, for his continuous help in statistical analysis and his valuable advices. His critical reading of this manuscript did much to help me preparing this thesis. Work could not be finished without his great efforts. Special thanks are due to him.

All thankful words for my supervisor **Dr. Mona Abdel-Zaher Osman**, Head researches of Animal Breeding, Sheep and Goats Breeding Research Department, Animal Production Research Institute, Agriculture Research Center, for her great efforts with me. She taught me a lot through my study and extended my understanding of my scientific career. Thanks my elder sister for your trust in me.

I am deeply grateful to **Dr. Ahmed Elbeltagi**, senior researcher of Biotechnology, Biotechnology Department, Animal Production Research

Institute, Agriculture Research Center, for design and review the molecular genetic part and making the entire experience fruitful and enjoyable. Ahmed's scientific thinking has been inspirational and his teaching, guidance and encouragement have been instrumental in the entire course of my work. Because of Ahmed, my PhD time has been full of stimulating discussions and boundless opportunities for developing my skills as a researcher.

I would like to express my sincere gratitude and heartfelt thanks to **Dr. Adel Aboul-Naga**, Head researches Emeritus of Animal Breeding, Sheep and Goats Breeding Research Department, Animal Production Research Institute, Agriculture Research Center, for his effort, time, helpful advices and valuable opinions.

Thanks is accorded to all the staff of Borg Al-Arab and El-Serw experimental farms, Animal Production Research Institute, Agriculture Research Center, especially **Dr. Ezz** and **Dr. Saied Hamad** for their direct and indirect assistance and cooperation.

I am forever indebted to my wife, **Marwa Shaker**, for her unending love, faith and support. She bears me a lot and suffered repeatedly from I am not being at home when she need me. Without her I would not be who I am. I am grateful to my mother, who taught me the value of science and gives me her love and confidence throughout.

Last but not least, I dedicate this work to the spirit of the absent present **Dr. Salah Galal**, who started this work as we follow in his footsteps.

CONTENTS

CONTENTS	
LIST OF TABLES	•••
LIST OF FIGURES	•••
LIST OF ABBREVIATIONS	•••
CHAPTER ONE: Genetic Parameters Estimation b	y
Random Regression Model as a Mothed of Quantitative	ve
Genetics	•
1. INTRODUCTION	•••
2. REVIEW OF LITERATURE	••
2.1. Study breeds	
2.1.1. Barki sheep	
2.1.2. Rahmani sheep	
2.2. Measuring growth	•••
2.2.1. Growth curve models	
2.2.2. Random regression model (RRM)	
2.2.3. Legendre polynomial (LP)	
2.3. Factors affecting live body weights	
2.3.1. Non-genetic factors	
2.3.1.1. Gender of lamb	
2.3.1.2. Type of birth	
2.3.1.3. Age of dam	
2.3.1.4. Year of birth	
2.3.1.5. Season of birth	.
2.3.2. Genetic parameters for live body weight	
2.3.2.1. Heritability	•••
2.3.2.2. Correlations	
3. MATERAILS AND METHODS	••
3.1. Data description	•••
3.2. Flocks management	
3.3 Statistical analysis	

3.3.1. Fixed Model
3.3.2. Random Regression Model
4. RESULTS AND DISCUSSION
4.1. Quantitative genetic improvement constraints in Egyptian
sheep
4.2. Descriptive statistics
4.3. Non-genetic factors affecting body weight traits
4.3.1. Gender of lamb
4.3.2. Type of birth
4.3.3. Age of dam
4.3.4. year of birth
4.3.5. Season of birth
4.3.6. Interactions
4.4. Variance components and genetic parameters
4.4.1. Variance components
4.4.2. Genetic parameters for live body weights
4.4.2.1. Heritability
4.4.2.2. Correlations
5. SUMMARY AND CONCLUSION
6. REFERENCES
CHAPTER TWO: Discovering and Genotyping Some Single Nucleotide Polymorphism (SNP) as a Method of Molecular Genetics
1. INTRODUCTION
2. REVIEW OF LITERATURE
2.1. Genes affecting the economic traits of sheep
2.1.1. Genes that affect growth and meat production
2.1.2. Genes that affect reproduction
2.1.3. Genes that affect wool production
2.2. Genotypic and allelic frequencies
2.3. Genetic equilibrium

	Page
2.4. Observed and expected heterozygosity	81
3. MATERIALS AND METHODS	82
3.1. Animals and samples preparation	82
3.2. DNA extraction	82
3.3. Selection of SNPs to be investigated for growth association	
in lamb's population	82
3.4. Statistical Analysis	83
3.5. Ethics statement	84
4. RESULTS AND DISCUSSIONS	86
4.1. Verification of growth-Related SNP	86
4.2. Annotation for Genes Harboring growth-associated SNPs	95
4.3. Genotypic and allelic frequencies	97
4.4. Genetic equilibrium	99
5. SUMMARY AND CONCLUSION	101
6. REFERENCES	104
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
	CHAPTER ONE	
1	List of Breeds, type of functions and traits used in	
	random regression model to fit sheep body weight	9
2	Estimates of heritability $(h^2) \pm standard errors (SE,$	
	when available) for live body weights in some	
	sheep breeds	16
3	Estimates of genetic correlation (rg) ± standard	
	errors (SE, when available) for live body weights in	
	some sheep breeds	18
4	Estimates of phenotypic correlation $(r_p) \pm standard$	
	errors (SE, when available) for live body weights in	
	some sheep breeds	19
5	Available data for Barki and Rahmani lambs	20
7	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for birth weight	
	(Bwt, kg) in Barki lambs	29
8	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	one (1wt), two (Wwt) and three months of age (3wt,	
	kg) in Barki lambs	30
9	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	four (4wt), five (5wt) and six months of age (6wt,	
	kg) in Barki lambs	30
10	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	seven (7wt), eight (8wt) and nine months of age	
	(9wt, kg) in Barki lambs	31

Table No.		Page
11	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	ten (10wt), eleven (11wt) and twelve months of age	
	(12wt, kg) in Barki lambs	31
12	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	thirteen (13wt), fourteen (14wt) and fifteen months	
	of age (15wt, kg) in Barki lambs	32
13	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	sixteen (16wt), seventeen (17wt) and eighteen	
	months of age (18wt, kg) in Barki lambs	32
14	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for birth weight	
	(Bwt, kg) in Rahmani lambs	33
15	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	one (1wt), two (2wt) and three months of age (3wt,	
	kg) in Rahmani lambs	33
16	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	four (4wt), five (5wt) and six months of age (6wt,	
	kg) in Rahmani lambs	34
17	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	seven (7wt), eight (8wt) and nine months of age	
	(9wt, kg) in Rahmani lambs	34
18	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	ten (10wt), eleven (11wt) and twelve months of age	
	(12wt, kg) in Rahmani lambs	35

Table No.		Page
19	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	thirteen (13wt), fourteen (14wt) and fifteen months	
	of age (15wt, kg) in Rahmani lambs	35
20	Least squares means (LSM) \pm standard errors (SE)	
	and mean separation test of Duncan for weights at	
	sixteen (16wt), seventeen (17wt) and eighteen	
	months of age (18wt, kg) in Rahmani lambs	36
21	Analysis of variance of some factors affecting	
	weights at birth (Bwt) and at three months of age	
	(3wt, kg) in Barki lambs	36
22	Analysis of variance of some factors affecting	
	weights at one (1wt) and two months of age (Wwt,	
	kg) in Barki lambs	37
23	Analysis of variance of some factors affecting	
	weights at four (4wt) and five months of age (5wt,	
	kg) in Barki lambs	37
24	Analysis of variance of some factors affecting	
	weights at six (6wt) and seven months of age (7wt,	
	kg) in Barki lambs	38
25	Analysis of variance of some factors affecting	
	weights at eight (8wt), nine (9wt) and ten months of	
	age (10wt, kg) in Barki lambs	38
26	Analysis of variance of some factors affecting	
	weights at eleven (11wt) and twelve months of age	
	(12wt, kg) in Barki lambs	39
27	Analysis of variance of some factors affecting	
	weights at thirteen (13wt) and fourteen months of	
	age (14wt, kg) in Barki lambs	39

Table No.		Page
28	Analysis of variance of some factors affecting	
	weights at fifteen (15wt) and sixteen months of age	
	(16wt, kg) in Barki lambs	40
29	Analysis of variance of some factors affecting	
	weights at seventeen (17wt) and eighteen months of	
	age (18wt, kg) in Barki lambs	40
30	Analysis of variance of some factors affecting birth	
	weight (Bwt, kg) in Rahmani lambs	41
31	Analysis of variance of some factors affecting	
	weights at one (1wt), two (Wwt) and three months	
	of age (3wt, kg) in Rahmani lambs	41
32	Analysis of variance of some factors affecting	
	weights at four (4wt), five (5wt) and six months of	
	age (6wt, kg) in Rahmani lambs	42
33	Analysis of variance of some factors affecting	
	weights at seven (7wt), eight (8wt) and nine months	
	of age (9wt, kg) in Rahmani lambs	42
34	Analysis of variance of some factors affecting	
	weights at ten (10wt) and eleven months of age	
	(11wt, kg) in Rahmani lambs	43
35	Analysis of variance of some factors affecting	
	weights at twelve (12wt) and thirteen months of age	
	(13wt, kg) in Rahmani lambs	43
36	Analysis of variance of some factors affecting	
	weights at fourteen (14wt), fifteen (15wt) and	
	sixteen months of age (16wt, kg) in Rahmani lambs	44
37	Analysis of variance of some factors affecting	
	weights at seventeen (17wt) and eighteen months of	
	age (18wt, kg) in Rahmani lambs	44