

# **Evaluation of Testicular Functions in Obese Adolescent Males**

**Thesis** 

Submitted for fulfilment of Ph.D. Degree of Childhood Studies Faculty of Postgraduate Childhood Studies

> By May Ali Sayed

Researcher Assistant,
Biological Anthropology Department
National Research Centre

Supervised by
Prof. Dr. Ahmed Mohamed Othman Elkahky
Professor of physiotherapy, Faculty of Postgraduate
Childhood Studies, Ain Shams University

Prof. *Dr. Mona Mamdouh A. Hassan*Professor of Pediatrics
Faculty of Medicine
Cairo University

Prof. Dr. Azza Mohamed Sarry Eldien
Professor of Biological Anthropology
National Research Center

**Prof. Dr. Hanaa Hamdy Ahmed Mohamed**Professor and Head of Hormones Department
National Research Center

Ain shams University 2019

#### **ACKNOWLEDGEMENT**

I am deeply thankful to AllAH, by Grace of WHOM, the progress and success of this work was possible.

I should express my deep appreciation and great thanks to **Prof. Dr. Mona Mamdouh Hassan** Professor of Pediatrics Cairo University for her supervision, giving the point of research, valuable guidance and advices. It is mainly due to her unstinted help; this work could be possible.

I wish to express my great indebtedness to **Prof. Dr. Ahmed Elkahky** Professor of physiotherapy, Institute of Postgraduate Childhood Studies Medical Studies Department for his outstanding advices and keen interest throughout the work.

I would like to express special appreciation and sincere thanks to **Prof. Dr. Azza Mohamed Sarry El Dien** Professor of Biological Anthropology National Research Center for her great efforts, helpful suggestions, standing beside me and helping me at any time.

I am also indebted to **prof. Dr. Hanna Hamdy Ahmed**, Head of hormones department National Research Center, for her great care, valuable instructions constant help and helful advice.

I would like to convey my genuine thanks to **DR. Khaled Helmy** doctor of Biological Anthropology National Research Center for his great efforts in the statistical analysis of the whole thesis and his valuable advices.

I would like to express my sincere gratitude and respect to **Dr. Ibrahim Abou Elmagd Ibrahim** doctor of Biological Anthropology

National Research Center for his great efforts and support.

I'm highly appreciating all DEMPU team specially **Dr. Noha Mousa** assistant Professor of Pediatrics, Faculty of Medicine, Cairo University, for providing all facilities for cases recruitment and interpretation of results.

Many thanks and appreciation to all adolescent boys (obese and lean) and their parents who approved to join the study.

## **List of Contents**

| Contents                                 | Page |
|------------------------------------------|------|
| List of Abbreviations                    | II   |
| List of Tables                           | V    |
| List of Figures                          | VI   |
| Abstract                                 | IX   |
| Introduction                             | 1    |
| Aim of the work                          | 3    |
| Review: Chapter (1): Obesity overview    | 4    |
| Review: Chapter (2): puberty in Boys     | 24   |
| Review: Chapter (3): Obesity And Puberty | 39   |
| Subjects and Methods                     | 54   |
| Results                                  | 70   |
| Discussion                               | 91   |
| Summary and conclusion                   | 99   |
| Recommendations                          | 102  |
| References                               | 103  |
| Appendix                                 | 131  |
| Arabic Summary                           | 4-1  |

#### List of Abbreviations

ACTH : Adrenocorticotropic hormone

ATF6 : Activating transcription factor 6

ACTR II : Activin receptor type II

ADA : American Diabetes Association

ALMS : Alstrom syndrome

AMH : Antimulleran hormone

AR : Androgen Receptor

ARC : Arcuate nucleus

BED : Binge eating disorders

BF : Body fat

BMI : Body Mass Index

CAH : Congenital adrenal hyperplasia

CDC : Center for Disease Control

CDGP : Constitutional delay of growth and puberty

DEMPU : Diabetes Endocrine and Metabolism Pediatric Unit

DEXA : Dual-energy X-ray absorptiometry

DNPCNCD: Diet, Nutrition and Prevention of Chronic non

communicable diseases

ECLIA : Electrochemiluminescence

ER : Endoplasmic reticulum

FMPP : Familial male- limited precocious puberty

FSH : Follicle stimulating hormone

FXS : Fragile X syndrome

GH : Growth hormone

| GHS-R    | : | Growth hormone secretagogue receptor    |
|----------|---|-----------------------------------------|
| GnRH     | : | Gonadotropin releasing hormone          |
| HBSC     | : | Health behavior in School-Aged Children |
| HCG      | : | Human chorionic gonadotropins           |
| HDL      | : | High density lipoprotein                |
| HOMA     | : | Homeostasis Model Assessment            |
| HPG axis | : | Hypothalamic pituitary gonadal axis     |
| Hy ob    | : | Hypothalamic obesity                    |
| IGF-I    | : | insulin-like growth factor-I            |
| INHB     | : | Human inhibin B                         |
| INSL-3   | : | Insulin growth factor 3                 |
| LDL      | : | Low density lipoprotein                 |
| LEP      | : | Leptin                                  |
| LEPR     | : | Leptin receptor                         |
| LH       | : | Luteinizing hormone                     |
| MAS      | : | McCune-Albright Syndrome                |
| MC4R     | : | Melanocortine 4 receptor                |
| MS       | : | Metabolic syndrome                      |
| MSH      | : | Melanocyte- stimulating hormone         |
| mTOR     | : | Mammalian target of rapamycin           |
| NAFLD    | : | Non-Alcoholic fatty liver disease       |
| NASH     | : | Non-Alcoholic steatohepatitis           |
| NKB      | : | Neurokinin B                            |
| PCOS     | : | Polycystic ovarian syndrome             |
| PHV      | : | Peak height velocity                    |

| PMv  | : | ventral premammillary nucleus     |
|------|---|-----------------------------------|
| POMC | : | Proopiomelanocortin gene          |
| PWP  | : | Prader–Willi phenotype            |
| SCFE | : | Slipped capital femoral epiphysis |
| SHBG | : | Sex hormone binding globulin      |
| T2D  | : | Type 2 diabetes                   |
| TSH  | : | Thyroid-stimulating hormone       |
| UPR  | : | unfolded protein response         |
| WC   | : | Waist circumference               |
| WHO  | : | World Health Organization         |

### **List of Tables**

| Table No.  | Title                                                                                                                       | Page |
|------------|-----------------------------------------------------------------------------------------------------------------------------|------|
| Table (1)  | Syndromic Causes of Obesity in Humans                                                                                       | 12   |
| Table (2)  | Types and causes of puberty-associated disorders                                                                            | 37   |
| Table (3)  | Mechanism of action of puberty onset in obese adolescent males.                                                             | 41   |
| Table (4)  | Sexual maturity rating stage                                                                                                | 58   |
| Table (5)  | Comparison between obese and lean boys as regard anthropometric measurement and lipid profile                               | 71   |
| Table (6)  | Comparison between obese and lean boys as regard gonadotropins, testicular hormones and estradiol                           | 73   |
| Table (7)  | Correlation between onset of obesity and BMI Z score                                                                        | 74   |
| Table (8)  | Correlation between BMI Z score and anthropometric measures                                                                 | 74   |
| Table (9)  | Correlation between BMI Z score and lipid profile                                                                           | 80   |
| Table (10) | Correlation between waist/ hip ratio and free, total testosterone                                                           | 80   |
| Table (11) | Correlation between BMI Z score and gonadotrophic, testicular hormones and estradiol in obese boys                          | 80   |
| Table (12) | Correlation between cholesterol and free testosterone                                                                       | 86   |
| Table (13) | Volume of the right and left testis of the obese boys included in this study measured by ultrasound and Prader orchidometer | 87   |
| Table (14) | Volume of the right and left testis of the lean boys included in this study measured by ultrasound and Prader orchidometer  | 88   |
| Table (15) | Comparison between obese and lean boys as regard right and left testicular size                                             | 89   |
| Table (16) | Correlation between BMI Z score and testicular size                                                                         | 89   |

## **List of Figures**

| Figure<br>No. | Title                                                                                         | Page |
|---------------|-----------------------------------------------------------------------------------------------|------|
| Fig. (1)      | A Social–Ecological Model of Influences on pediatric obesity                                  | 7    |
| Fig. (2)      | Afferent input in proportion to body fat mass and response to satiety signals                 | 11   |
| Fig. (3)      | Complications of obesity                                                                      | 14   |
| Fig. (4)      | Schematic of the complex pathophysiology of CVD in 'adiposopathy' of obesity                  | 15   |
| Fig. (5)      | Relationship of obesity to obstructive sleep apnea and cardiovascular disease                 | 16   |
| Fig. (6)      | Plain X–ray shows Infantile Blount disease                                                    | 20   |
| Fig. (7)      | Physical changes and secondary sexual characteristics that appear during pubertal development | 25   |
| Fig. (8)      | Prader orchidometry                                                                           | 26   |
| Fig. (9)      | Male pubic hair and genital development                                                       | 27   |
| Fig. (10)     | Hormonal regulation of the testicular function and effects of androgens                       | 28   |
| Fig. (11)     | Graph of changes in LH, testosterone, and inhibin B values during genital stages 1, 2 and 3   | 29   |
| Fig. (12)     | Mechanisms of action of the genetic factors involved in the control of puberty onset          | 32   |
| Fig. (13)     | Effect of leptin as a permissive factor for pubertal onset                                    | 44   |
| Fig. (14)     | Interactions between leptin and the hypothalamic–pituitary–testicle axis                      | 45   |
| Fig. (15)     | Role of hyperinsulinemia in obesity on early pubertal maturation                              | 48   |
| Fig. (16)     | Waist circumference measuring method                                                          | 57   |
| Fig. (17)     | Hip circumference measuring method                                                            | 57   |

| Figure<br>No. | Title                                                                                              | Page |
|---------------|----------------------------------------------------------------------------------------------------|------|
| Fig. (18)     | Penile length percentile                                                                           | 60   |
| Fig. (19)     | Comparison between obese and lean boys as regard anthropometric measures                           | 72   |
| Fig. (20)     | Comparison between obese and lean boys as regard lipid profile                                     | 72   |
| Fig. (21)     | Comparison between obese and lean boys as regard gonadotrophins, testicular hormones and estradiol | 74   |
| Fig. (22)     | Correlation between BMI Z score and weight Z score among obese adolescent boys                     | 75   |
| Fig. (23)     | Correlation between BMI Z score and height Z score among obese adolescent boys                     | 76   |
| Fig. (24)     | Correlation between BMI Z score and hip circumference among obese adolescent boys                  | 77   |
| Fig. (25)     | Correlation between BMI Z score and waist circumference among obese adolescent boys                | 78   |
| Fig. (26)     | Correlation between BMI Z score and waist/ hip ratio among obese adolescent boys                   | 79   |
| Fig. (27)     | Correlation between BMI Z score and LH among obese adolescent boys                                 | 81   |
| Fig. (28)     | Correlation between BMI Z score and FSH among obese adolescent boys                                | 82   |
| Fig. (29)     | Correlation between BMI Z score and free testosterone among obese adolescent boys                  | 83   |
| Fig. (30)     | Correlation between BMI Z score and total testosterone among obese adolescent boys                 | 84   |
| Fig. (31)     | Correlation between BMI Z score and inhibin B among obese adolescent boys                          | 85   |
| Fig. (32)     | Correlation between BMI Z score and estradiol among obese adolescent boys                          | 86   |

| Figure<br>No. | Title                                                                                                | Page |
|---------------|------------------------------------------------------------------------------------------------------|------|
| Fig. (33)     | Correlation between volume measurement by the Prader orchidometer and ultrasound of the left testes  | 88   |
| Fig. (34)     | Correlation between volume measurement by the Prader orchidometer and ultrasound of the right testes | 89   |