

Corrosion protection of Mg-1%Zn and Mg-6%Zn orthopedic implant alloys in simulated body fluid

BY

Marwa Mohammed Mohammed Esmail

A Thesis

Submitted for Ph.D degree of Science (Physical Chemistry)

Faculty of Girls for Arts, Science & Education

Ain Shams University

Supervisors by

Dr. Omyma Ramadan
Mohammed
Assistant Prof. of Physical
Chemistry
Faculty of Girls, Arts,
Science and Education.
Ain Shams University,
Egypt.

Dr. Ensherah
AbdEl-Wahab
Assistant Prof. of Physical
Chemistry
Faculty of Girls, Arts,
Science and Education.
Ain Shams University,
Egypt.

Dr. Aisha Kassab
Abdelaziz
Assistant Prof. of Physical
Chemistry
Faculty of Girls, Arts,
Science and Education.
Ain Shams University,
Egypt.

Ain Shams University Faculty of Girls, Arts, Science and Education Cairo, Egypt

Corrosion protection of Mg-1%Zn and Mg-6%Zn orthopedic implant alloys in simulated body fluid

A Thesis

Submitted for Ph.D degree of Science (Physical Chemistry)
Faculty of Girls for Arts, Science & Education
Ain Shams University

Presented by

Marwa Mohammed Mohammed Mohammed Esmail

Cairo, 2019

Student Name: Marwa Mohammed Mohammed Esmail.

Scientific Degree: Ph.D (Physical Chemistry).

Department: Chemistry.

Name of Faculty: Faculty of Girls for Arts, Science & Education.

University: Ain Shams.

B. Sc. Graduation Date: May 2012

ACKNOWLEDGEMENT

Thanks GOD

My deepest gratitude and appreciation to *Dr. Omyma Ramadan Mohamed*, Assistant Professor of Physical Chemistry, College for Girls, Arts, Science and Education, Ain Shams University, for her deep concern in this work, support, directs supervision and valuable guidance throughout the whole work.

I am extremely fortune to work under supervision of *Dr. Ensherah Abd El-Wahab*, Assistant Professor of Physical Chemistry, University College for Girls, Ain Shams University, I shall always be grateful for her supervision, guidance, constant encouragement and abundant patience. I do not think that I can ever thank her enough for all her support throughout the work.

I would like to thank **Dr.** *Aisha Kassab*, Assistant Professor of Physical Chemistry, University College for Girls, Ain Shams University, for their guidance and support during the beginning of this work.

The author wishes to express her thanks to head of the chemistry department, Faculty of girls, Ain Shams University, for providing the facilities needed throughout the research work.

A special deep thanks to the staff members electrochemistry for their support during the execution of this work

i

Lastly, many thanks also to my mother, my father, my husband and my family. At difficult times, they offered me great help and encouragement. At good time, they shared my happiness.

Marwa Mohammed

LIST OF CONTENTS

CONTENTS

List of Tables	i-iii
List of Figures	iv-xii
Aim of the Work	xiii-xiv
CHAPTER I.	
Introduction	1
CHAPTER II	
Experimental Techniques	26
II.1- Materials.	26
II.1.1. Mg - Zn alloys sheets	26
II.1.1-Chemicals	27
II.1.1.2. Cell Construction	29
II.1.1.3.Electroplating Procedure	29
II.1.1.3.1 - Mechanical Polishing	30
II.1.1.3.2 - Coating process	31
II.2- Surface characterization of the coatings	31
II.2.1- Microstructure Study	31
II.2.1.1- Scanning electron microscope (SEM)	31
II.2.1.2- Fourir-Transform Infrared Spectroscopy (FTIR)	33
II.2.1.3- X-ray Diffraction (XRD)	33
II.2.2- Corrosion Resistance	35
Electrochemical Study	35

CHAPTER III	
Results and Discussion	37
III.A-Part I	37
Microscopic Results Before and After Corrosion	37
Fourier-Transform Infrared Spectroscopy (FTIR)	46
X-Ray Diffraction Pattern XRD and EDAX	53
Potentiodynamic Polarization Studies	67
IIIB- part II	77
Microscopic Results before and after corrosion	77
Fourier-Transform Infrared Spectroscopy (FTIR)	85
X-Ray Diffraction Pattern XRD and EDAX	92
Potentiodynamic polarization studies	105
SUMMARY	115
REFERENCE	119
Arabic Summary	

LIST OF TABLES

List of Tables

Table	Subject	Page
Table (1)	Mechanical and physical properties of various implant materials compared to natural bone tissue	2
Table (2)	Chemical composition of Mg - 1% Zn	27
Table (3)	Chemical composition of Mg - 6%Zn	27
Table (4)	Chemical composition of coating baths	28
Table (5)	Chemical composition of simulated body fluid (SBF)	28
Table (6)	The corrosion kinetic parameters E_{corr} , I_{corr} , C_R and R_P determined from the polarization curves in the Tafel region for the as coated Mg - 1% Zn alloy in the four bathes in simulated body fluid.	68
Table (7)	The corrosion kinetic parameters E_{corr} , I_{corr} , C_R and R_P determined from the polarization curves in the Tafel region for Mg $-$ 1%Zn alloy (bath I) in simulated body fluid with different times.	70

Table (8)	The corrosion kinetic parameters E_{corr} , I_{corr} , C_R and R_P determined from the polarization curves in the Tafel region for Mg $-$ 1%Zn alloy (bath II) in simulated body fluid with different times.	71
Table (9)	The corrosion kinetic parameters E_{corr} , I_{corr} , C_R and R_P determined from the polarization curves in the Tafel region for Mg – 1%Zn alloy (bath III) in simulated body fluid with different times.	71
Table (10)	The corrosion kinetic parameters E_{corr} , I_{corr} , C_R and R_P determined from the polarization curves in the Tafel region for Mg $-$ 1%Zn alloy (bath IV) in simulated body fluid with different times.	72
Table(11)	The corrosion kinetic parameters E_{corr} , I_{corr} , C_R and R_P determined from the polarization curves in the Tafel region for the as coated Mg- 6 %Zn alloy in the four bathes in simulated body fluid.	106
Table(12)	The corrosion kinetic parameters E_{corr} , I_{corr} , C_R and R_P determined from the polarization curves in the Tafel region for Mg- 6 %Zn alloy (bath I) in simulated body fluid with different times.	108

Table (13)	The corrosion kinetic parameters E_{corr} , I_{corr} , C_R and R_P	109
	determined from the polarization curves in the Tafel region	
	for Mg- 6 %Zn alloy (bath II) in simulated body fluid with	
	different times.	
Table (14)	The corrosion kinetic parameters E_{corr} , I_{corr} , C_R and R_P	109
	determined from the polarization curves in the Tafel region	
	for Mg- 6 %Zn alloy (bath III) in simulated body fluid with	
	different times.	
Table (15)	Table (15): the corrosion kinetic parameters E_{corr} , I_{corr} , C_R	110
	and R _P determined from the polarization curves in the Tafel	
	region for Mg- 6 %Zn alloy (bath IV) in simulated body	
	fluid with different times.	

LIST OF FIGURES

List of Figures

Fig.	Subject	Page
Fig. (1)	Schematic diagram of experimental pparatus	29
Fig. (2)	Schematic diagram representing typical	30
	processes applied.	
Fig. (3)	Typical SEM unit.	32
Fig. (4)	X-ray Diffraction (XRD) instrument.	34
Fig.(5a)	Scanning electron microscope of surface	38
	morphology of as coated Mg -1%Zn from	
	bath I.	
Fig.(5b)	Scanning electron microscope of surface	38
	morphology of as coated Mg -1%Zn from	
	bath II.	
Fig. (5c)	Scanning electron microscope of surface	39
	morphology of as coated Mg -1%Zn from	
	bath III.	
Fig.(5d)	Scanning electron microscope of surface	39
	morphology of as coated Mg -1%Zn from IV	
Fig.(6a)	Scanning electron microscope of surface	42
	morphology of bath I immersed in simulated	
	body fluid for two weeks.	