

Wireless Sensor Network Based Real-Time Monitoring System Applications

THESIS

Submitted to Faculty of Science-Ain Shams University in partial fulfillment for Degree of master in Physics

 B_{V}

Shaimaa Khaled Mohamed Nour Eldeen

B.Sc. in Physics 2012

Supervisors

Prof. Dr. Ashraf Shamseldin Yahia

Professor of Electronics, Physics Dept., Faculty of Science, Ain Shams University

Prof. Dr. Hatem Mohamed Elborai

Professor of Electronic Engineering, Physics Dept., Faculty of Science, Ain Shams University

Prof. Dr. Hossam E.M. Sayour

Professor of Bioanalytical Chemistry, Medical Chemistry Unit, Animal Health Research Institute

2019

Physics Department Faculty of Science Ain Shams University

APPROVAL SHEET

Name: Shaimaa Khaled Mohamed Nour Eldeen

Title: Wireless Sensor Network Based Real-Time Monitoring System Applications

Supervisors

Prof. Dr. Ashraf Shamseldin Yahia

Professor of Electronics, Physics Dept., Faculty of Science, Ain Shams University

Prof. Dr. Hatem Mohamed Elborai

Professor of Electronic Engineering, Physics Dept., Faculty of Science, Ain Shams University

Prof. Dr. Hossam E.M. Sayour

Professor of Bioanalytical Chemistry, Medical Chemistry Unit, Animal Health Research Institute

Wireless Sensor Network Based Real-Time Monitoring System Applications

By

Shaimaa Khaled Mohamed Nour Eldeen

Supervisors:	Signature
Prof. Dr. Ashraf Shamseldin Yahia Professor of Electronics, Physics Department Faculty of Science, Ain Shams University	
Prof. Dr. Hatem Mohamed Elborai Professor of Electronic Engineering, Physics Dept., Faculty of Science, Ain Shams University	
Prof. Dr. Hossam E.M. Sayour Professor of Bioanalytical Chemistry, Medical Chemistry Unit, Animal Health Research Institute	

2019

Ain Shams University

Name: Shaimaa Khaled Mohamed Nour Eldeen

Degree: M.Sc.

Department: Physics

Faculty: Science

University: Ain Shams University

Graduation Date: 2012 - Ain Shams University

Registration Date: 8/7/2015

Grant Date: 2019

© 2019

Shaimaa Khaled Mohamed Nour Eldeen ALL RIGHTS RESERVED

Contents

		Page
Acknow	ledgments	I
Abstrac	t	III
List of F	igures	IV
List of T	Tables	VI
Abbrevi	ations	VII
Chapter	· 1: Introduction	
1.1	Problem Statement	1
1.2	Motivation	2
1.3	Literature Review	2
1.4	Organization of Thesis	5
Chapter	· 2: Wireless Sensor Network	
2.1	Introduction	8
2.2	WSN Architecture	8
2.3	Network Topology	12
2.4	WSN Limitations	15
2.5	WSN Characteristics	16
2.6	WSN Communication Protocol	18
2.7	WSN Communication Technologies	22
2.8	WSN Applications	26
2.8.1	Military Applications	27
2.8.2	Environmental Monitoring Applications	27
2.8.3	Robotic Applications	29
2.8.4	Commercial Applications	29
Chapter	3: Aquaponics	
3.1	Introduction	32

3.2	Nitrogen Cycle	34
3.3	Water Quality in Aquaponics	36
3.3.1	Tolerance Range for Each Organism	36
3.3.2	The Most Important Water Quality Parameters	37
3.3.2.1	Dissolved Oxygen	37
3.3.2.2	pH	38
3.3.2.3	Temperature	41
3.3.2.4	Total Nitrogen: Ammonia, Nitrite, Nitrate	41
3.3.2.5	Water hardness	44
Chapter	4: System Architecture	
4.1	Introduction	47
4.2	System Hardware Architecture	47
4.2.1	Power Supply Unit	48
4.2.2	pH Electrode and Module	49
4.2.2.1	pH Module Circuit Construction Stages	51
4.2.3	Ammonia Electrode and Module	55
4.2.3.1	Ammonia Module Circuit Construction Stages	57
4.2.4	Temperature Sensors	58
4.2.4.1	Water Temperature Sensor	58
4.2.4.2	Ambient Temperature Sensor	59
4.2.5	Microcontrollers (Arduino Boards)	59
4.2.6	Arduino Ethernet Shield	60
4.2.7	Wireless Transceiver Module	61
4.3	Software Flowchart	61
Chapter	5: Results and Discussions	
5.1	Introduction	66

5.2	Data Representation on ThingSpeak and		
	Discussion	66	
5.3	Sending Alert Using ThingSpeak and IFTTT	71	
5.3.1	Create a ThingHTTP	71	
5.3.2	Create a REACT to pH Data	74	
5.3.3	Create an IFTTT Applet	75	
5.4	Nodes Cost	78	
Chapter	6: Conclusion and Future work	82	
Reference	es	85	
Appendi	ces		
Appendi	x A	91	
Appendi	x B	92	
Appendi	x C	94	

Acknowledgments

In the name of Allah, all praises to Allah for his grace in completing this work.

I would like to thank Prof. Dr. Ashraf Shamseldin Yahia, Head of electronics Group, Physics Department, Faculty of Science, Ain Shams University, for his continuous encouragement, valuable and fruitful discussions, criticism, detailed and valuable comments, help during this work and revision of this thesis.

I wish to thank Prof. Dr. Hatem Mohamed Elborai, Professor of Electronic Engineering, Physics Department, Faculty of Science, Ain Shams University, for his support, help during the experimental realization of this thesis task, and reviewing this thesis.

I wish to thank Prof. Dr. Hossam E.M. Sayour, Professor of Bioanalytical Chemistry and Head of Molecular Biomimetics Research Group, Animal Health Research Institute, for suggesting the point of research.

I wish to thank Prof. Dr. Mostafa El-Aasser, Professor of Electronics, Physics Department, Faculty of Science, Ain Shams University, for his help to review the thesis presentation and comments on final seminar presentation.

A lot of thanks to Dr. Mohamed Hussein, Lecturer of Electronics at Physics Department, Faculty of Science, Ain Shams University, for his help to review the manuscript. Also, his valuable and fruitful comments to put it in the best shape is greatly acknowledged.

A lot of thanks to Dr. Nasr Gad, Lecturer of Electronics at Physics Department, Faculty of Science, Ain Shams University, for his help taking time to review this thesis, and help to review the final seminar presentation to put it in an elegant form.

I would like to thank Prof. Dr. Mohamed Medhat, Professor of Physics, Physics Department, Faculty of Science, Ain Shams University, for his agreement to use pH/mV meter in his lab for pH sensor calibration.

I wish to thank Prof. Dr. Saad Hassan and Prof. DR. Ayman Helmy, professors of Analytical Chemistry, Chemistry Dept., Faculty of Science, Ain Shams University, for their agreement to do pH and ammonia sensors calibration with pH/mv meter in prof. Saad's lab. Also, their valuable and fruitful discussions related to ammonia sensor and its calibration.

I also extend my thanks to my colleagues, Hagar Mostafa, Asmaa Abdel Azim, Abd Elerahman Elewa, Mohammed Adel, and Mohamed Elsaid, for their help and support.

Finally, infinite love and sincere thanks go to my family for providing me with the possibilities and assistance, continuous encouragement, and for their constant support to me until the completion of this work for the best.

Abstract

A low-cost wireless sensor network (WSN) solution for real-time monitoring of water quality is introduced and experimentally demonstrated. The investigated system provides monitoring of ammonia concentration in water which plays a critical role for aquatic organisms due to its toxic and hazardous effects on them. Additionally, the system can sense water pH, water temperature, and ambient temperature. It is capable of periodically sensing different parameters, then sending parameters captured data to a virtual cloud called ThingSpeak that providing monitoring data remotely via Internet through mobile phone or PC and analyzing them to send alert to the user through IFTTT platform when any parameter's value is out of its safety range. Besides, the system supports sleep/wake-up mechanisms for power saving.

The proposed system can be used in several areas interested in water quality monitoring such as monitoring and contamination detection of water bodies (lakes, rivers, ponds, etc.). Also, it provides water quality monitoring in aquaculture, and aquaponics farms that help in enhancing food productivity and food security. Furthermore, it can be used for drinking water monitoring, irrigation water monitoring, etc.

Keywords

Wireless Sensor Networks, Internet of Things (IoT), Multi-sensor system, Interface circuit, Water quality monitoring

List of Figures

Figure 2.1	Common wireless sensor network architecture	9
Figure 2.2	WSN node architecture	10
Figure 2.3	General WSN network topologies	12
Figure 2.4	OSI model seven layers	19
Figure 2.5	Protocol stack of WSN	20
Figure 2.6	ISM band frequency allocation	23
Figure 3.1	Design of Aquaponic unit	33
Figure 3.2	Nitrogen flow chart in soil	34
Figure 3.3	Nitrogen flow chart in an Aquaponic system	35
Figure 4.1	Developed monitoring system different nodes: (a) Sensor	
	node, and (b) Gateway	47
Figure 4.2	Developed power supply unit	48
Figure 4.3	pH glass electrode combination: 1- cable, 2- cap, 3- body-	
	glass or epoxy, reference electrode (4- reference chamber	
	filled with internal-fill solution, 5- reference wire, 6-	
	diaphragm), and glass electrode (7- pH wire immersed in	
	a buffer solution + KCl (pH=7), 8- pH sensitive glass	
	membrane)	49
Figure 4.4	pH interface circuit design using Kicad software	50
Figure 4.5	A non-inverting op-amp simulation screenshot for 220	
	mV input voltage using proteus simulator for (a) TL072,	
	(b) CA3130	53
Figure 4.6	pH module circuit simulation screenshot for -315 mV	
	input voltage using proteus simulator	54
Figure 4.7	Data representation of calculated and experimental	
	output voltage of pH module circuit	54

Figure 4.8	(a) Orion, (b) Adwa pH/mv benchtop meters, (c) pH	
	interface circuit	55
Figure 4.9	Ammonia gas ion selective electrode combination	56
Figure 4.10	Ammonia interface circuit design using Kicad software	57
Figure 4.11	Produced ammonia electrode response curve using	
	ammonia interface circuit at different concentrations of	
	ammonia	58
Figure 4.12	(a) DS18B20 water temperature sensor, (b) Ambient	
	temperature sensor	59
Figure 4.13	(a) Arduino Nano, (b) Arduino Mega	60
Figure 4.14	(a) Arduino Ethernet Shield, (b) UART wireless	
	transceiver modules	61
Figure 4.15	(a) Gateway node algorithm, (b) Sensor node algorithm	63
Figure 4.16	Communication between gateway and sensor nodes	64
Figure 5.1	Real-time monitoring data representation on ThingSpeak	
	IoT platform: (a) pH data, (b) water temperature data, (c)	
	air (ambient) temperature data, (d) ammonia data	
	(ammonia zero readings indicate that water has zero	
	ammonia concentration which is the desired condition of	
	a sustainable environment for aquatic organisms)	69
Figure 5.2	ThingHTTP setting	72
Figure 5.3	REACT setting for pH < 6	73
Figure 5.4	REACT setting for pH > 8	74
Figure 5.5	Create a Webhook	7 6
Figure 5.6	Create SMS notification.	77
Figure 5.7	Create Email notification.	77
Figure 5.8	(a) Email, and (b) SMS notifications	78

Figure 5.9	Gateway (Arduino Mega + Ethernet shield + HC-11	
	module), and Sensor node (Arduino Nano + HC-11	
	module) Hardware	79
Figure 5.10	Cost of Libelium Waspmote commercial solution which	
	includes (a) Waspmote ZigBee SMA 5 dBi, and (b)	
	Waspmote Gateway ZigBee SMA 5 dBi	80
List of Ta	ables	
Table 1.1	Summary of characteristics of previous systems and our	
	work	6
Table 2.1	Characteristics of some wireless communication	
	technologies	25
Table 3.1	General water quality tolerances for fish (warm- or cold-	
	water), hydroponic plants and nitrifying bacteria	37
Table 3.2	Ideal parameters for aquaponics as a compromise between	
	all three organisms	37
Table 5.1	Real Time Data stored in ThingSpeak IoT platform which	
	include four fields for pH, water temperature, ambient	
	temperature, and ammonia data	67
Table 5.2	Cost of sensor node and gateway	79