THE EFFECT OF SOME HERBAL EXTRACTS ON LIVER CELLS

(BIOLOGICAL STUDY)

Submitted By

Eman Mohamed Ali Shaban

B.Sc. of Science (Chemistry), Faculty of Science, Tanta University, 1995

Diploma in Biochemistry, Faculty of Science, Alexandria
University, 1999

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

THE EFFECT OF SOME HERBAL EXTRACTS ON LIVER CELLS

(BIOLOGICAL STUDY)

Submitted By Eman Mohamed Ali Shaban

B.Sc. of Science (Chemistry), Faculty of Science, Tanta University, 1993

Diploma in Biochemistry, Faculty of Science, Alexandria

University, 1999

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Master Degree

In

Environmental Sciences
Department of Environmental Basic Sciences

This thesis was discussed and approved by:

The Committee

Signature

1-Prof. Dr. Mohsen Abd El-Hamid Gad Allah

Prof. of Public Health Faculty of Medicine Ain Shams University

2-Prof. Dr. Ahmed Hamdy Mostafa Hussein

Head of Research for the national Serum & Vaccine Authority

3-Prof. Dr. Mahmoud Ahmed Ibrahim Hewaihy

Prof. of Public Health, Department of Environmental Basic Sciences

Institute of Environmental Studies & Research Ain Shams University

2020

THE EFFECT OF SOME HERBAL EXTRACTS ON LIVER CELLS

(BIOLOGICAL STUDY)

Submitted By Eman Mohamed Ali Shaban

B.Sc. of Science (Chemistry), Faculty of Science, Tanta University, 1993

Diploma in Biochemistry, Faculty of Science, Alexandria

University, 1999

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Master Degree

In

Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Mahmoud Ahmed Ibrahim Hewaihy

Prof. of Public Health, Department of Environmental Basic Sciences

Institute of Environmental Studies & Research Ain Shams University

2-Dr. Amany Mohamed Maher Ibrahim Abo El Fadl

Lecturer of Biochemistry & Molecular Biology, Medical Research Center

Faculty of Medicin Ain Shams University

3-Dr. Nancy Samir Wahba Basta

Lecturer of Clinical& Chemical Pathology Faculty of Medicin Ain Shams University

2020

ACKNOWLEDGEMENT

I would first like to thank my thesis advisor Professor Doctor. Mahmoud Ahmed Ebrahim Hewehy of the Professor of Major Health Institute of Environmental Studies and Research at Ain Shams University. The door to Prof. Hewehy office was always open whenever I ran into a trouble spot or had a question about my research or writing.

I would also like to thank the experts who were involved in the validation survey for this research project: Doctor . Amany Mohamed Maher Lecturer of Biochemistry and Molecular Biology Medical Research Center -Faculty of Medicine - Ain Shams University of the experts who participated. Without their passionate participation and input, the validation survey could not have been successfully conducted.

I would also like to acknowledge Doctor. Nancy Samir Wahba Basta of Lecturer of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University as the second reader of this thesis, and I am gratefully indebted to her for her very valuable comments on this thesis.

And finally, last but by no means least, also to everyone in the Medical Ain Shams Research Institute (MASRI) it was great sharing laboratory with all of you during last four years.

ABSTRACT

Usnic acid (UA), a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken for toxicity evaluations of (+)UA on HepG2 cell line in culture. The cells were treated with the vehicle control and (+)UA at concentrations of 0-100 µM for 24 h at 37°C in 5% CO₂ incubator. Following the treatment period, the cells were evaluated by biochemical endpoints of toxicity that included MTT activity, LDH release, liver function tests and alphafetoprotein as a tumor marker. (+)UA exposure resulted in increased cytotoxicity and mitochondrial dysfunction in HepG2 cells. compared with the controls, low non-toxic concentrations of UA separately showed no effect on the cells as determined by the biochemical endpoints compared with higher concentrations (P<0.001). The findings in this study demonstrated the toxicity of the (+) (UA) to human hepatoblastoma HepG2 cells, suggesting an oxidative mechanism of action.

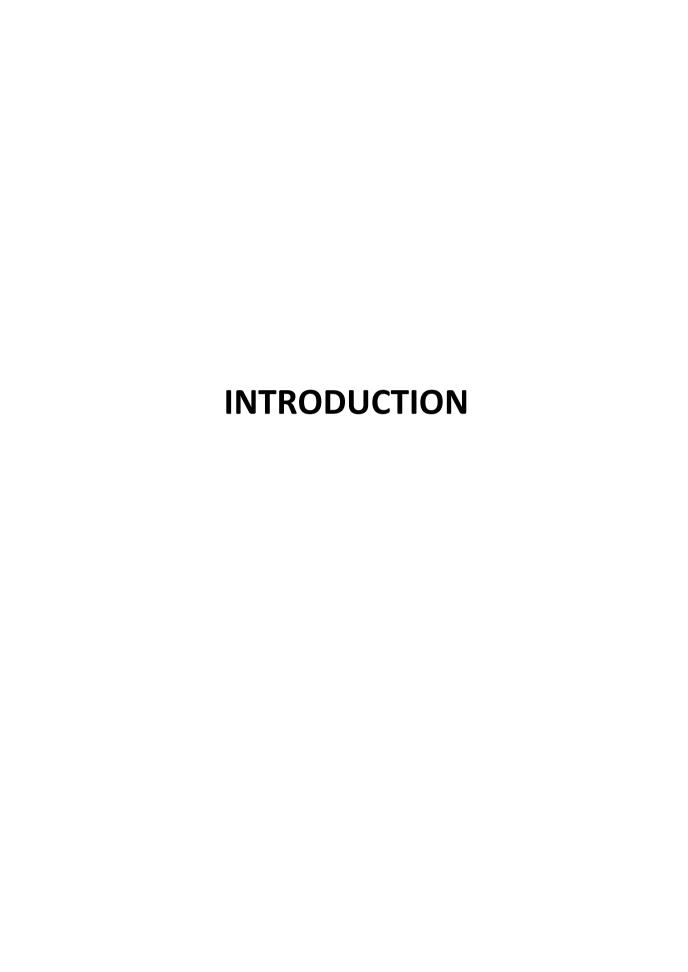
<u>CONTENTS</u>	
Subject	Page
1.INTRODUCTION	1
Aim of the study	3
2. Review of Literature	4
2.1. Mammalian liver structure and function	4
2.2.Liver: pathological condition	7
2.3.HepG2 cell line	11
2.4.Usnic Acid	13
2.5.Chemistry of Usnic Acid	14
2.6.Botany of Usnea Lichens	17
2.7.HISTORY OF USE OF USNEA LICHENS AND USNIC ACID	18
2.8.Clinical Pharmacology	20
2.9.Metabolism of usnic acid	24
2.10. IN VITRO TOXICITY DATA	24
2.11.MECHANISM OF ACTION OF USNIC ACID	25
2.11.Introduction to drug-induced liver toxicity (DILI)	29
3.Materials and Methods	33
3.1.Materials	33
3.2. Methods	36
4.Results	60
5.Discussion	84
6.Summery and conclusion	89
7.Refrence	93
8.Arabic summery	107

LIST OF TABLES

Table		Page
Table (1):	The Effects of Usnic acid on HepG2 cell line	61
Table (2):	Statistical values of cell viability	62
Table (3):	Cytotoxicity of Usnic acid on HepG2 cell line MTT assay	70
Table (4):	The Effects of different concentrations of Usnic acid on LDH release in HepG2 cell line	72
Table (5):	The Effects of different concentrations of Usnic acid on AFP secretion in HepG2 cell line	74
Table (6):	The Effects of different concentrations of Usnic acid on AST in HepG2 cell line	76
Table (7):	The Effects of different concentrations of Usnic acid on ALT in HepG2 cell line	78
Table (8):	The Effects of different concentrations of Usnic acid on γGT in HepG2 cell line	80
Table (9):	The Effects of different concentrations of Usnic acid on ALP in HepG2 cell line	82

LIST OF FIGURES

Figure		page
Figure (1):		5
Figure (2):	Hep G2	13
Figure (3):	Structure of usnic (a) and isousnic (b) acids	14
Figure (4):	Mechanism of mitochondrial uncoupling	16
Figure (5):	Typical Usnea Lichen samples	18
Figure (6):	HepG2 cell line morphology	35
Figure (7):	Different Steps in HepG2 cell line cultivation	37
Figure (8):	Haemocytometer Count of cells	41
Figure (9):	HepG2 cell counting	42
Figure (10):	MTT assay	46
Figure (11):	LDH cytotoxicity Assay	49
Figure (12):	Schematic procedure of LDH cytotoxicity Assay	50
Figure (13):	Viability responses of of HepG2 cells' by different Usnic acid concentration	63
Figure(14):	Control HepG2 cell line (100%confleuence)	64
<u>Figure (15):</u>	HepG2 cells treated with 5 μM Usnic acid	64
<u>Figure (17):</u>	HepG2 cells treated with 20 μM Usnic acid	66


Figure (18):	HepG2 cells treated with 50 μM Usnic acid	67
Figure (19):	HepG2 cells treated with 100 μM Usnic acid	68
Figure 20:	cell viability measured by the Trypan Blue assay	69
Figure (21):	Comparison between mean values of MTT cytotoxicity and concentration of Usnic acid	71
Figure (22):	Comparison between mean values of % of LDH release and concentration of Usnic acid	73
Figure (23):	Comparison between mean values of AFP level and	75
Figure (24):	Comparison between mean values of AST level and concentration of Usnic acid	77
Figure (25):	Comparison between mean values of ALT level and concentration of Usnic acid	79
Figure (26):	Comparison between mean values of gGT level and concentration of Usnic acid	81
1	•	

List of abbreviation

- v	Arithmetic mean
X ADME	Absorption, Distribution, Metabolism,
AFLD	Alcoholic Fatty liver Disease (alcoh
AFP	Alfa-FetoProtein
ALP	Alkaline phosphatase
AST	·
ATF6	Aspartate Transaminase
	Activating Transcription factor-6
ATP BC	Adenosine Triphosphate
	Bile Canalicular.
CCI4	carbon Tetrachloride
CD14	cluster of Differentiation 14
CES	Carboxylesterase
DEMSO	Dimethyl Sulfoxide
DILI	drug-induced liver toxicity
DNA	Deoxyribonucleic Acid
EDTA	Ethylenediaminetetraacetic Acid
ER	Endoplasmic Reticulum
FBS	Fetal bovine serum
GOT	Glutamate-Oxaloacetate Transaminase
GPT	Glutamate Pyruvate Transaminase
GST	Glutathione S Transferase
HaCaT	Non transformed human keratinocyte cel
HCC	Hepatocellular carcinoma.
HEC-50	Endometrial carcinoma cell culture
HEPG2	Human hepatoblastoma cells
HPLC	High Performance liquid Chromatogr
IC50	The concentration of an inhibitor th
IRE1a	Inositol-requiring enzyme 1 alph
Keap1-Nrf2-AR	Keap1-nuclear factor erythroid-related
LDH	Lactate dehydrogenase
LPS	Lipopolysaccharides
MASRI	Faculty of Medicine Research Institut
MD2	Lymphocyte antigen 96
MDH	malate dehydrogenase
NAD(P)H dehyd	rogenase (nicotinamide adenine dinucleot
NAFLD	Non-alcoholic fatty
NK	Natural killer
NQO1	NAD(P)H quinone oxid
OD	Optical Density
P	Propabability
•	

List of abbreviation

P450	Cytochromes P450 (CYPs
PERK	Protein kinase RNA-like
PFIC	Progressive Familial
RLUs	relative light Units
RNA	Ribonucleic Acid
SD	Standard Deviation
TCM	Traditional Chinese Medi
TLR4	Toll-like Receptor 4
UPR	unfolded Protein Response
WIF-B	Hepatoma-derived hybrid cell lin
γ-GT	Gamma-Glutamyl Transpepti

1. Introduction

The liver is the primary organ involved in xenobiotic metabolism. Because of its high level of metabolic activity and exposure to blood-borne agents, the liver is a major target organ of many chemicals, drugs and microbial pathogens. Thus, hepatotoxicity is a serious safety concern related to food additives, food contaminants, dietary supplements and food-borne microbial pathogens (*Treinen-Molsen*, 2001).

Development of alternative *in vitro* assays is necessary for rapid, cost-effective and high-throughput toxicological screening and characterization of compounds to complement and/or supplement costly and time-consuming *in vivo* animal tests. Human cell cultures and toxicogenomics are sensitive tools for such high-throughput toxicity testing. They have the potential to eliminate the need for interspecies extrapolation, to increase efficiencies in testing and to reduce the use of animals when used in combination with traditional biochemical endpoints (*Meek and Doull*, 2009).

Human hepatoblastoma HepG2 cells have been well characterized and are widely used as an *in vitro* model (*Fang and Beland*, 2009). These cells are highly differentiated and display many genotypic and phenotypic features of normal liver cells. They preserve many of the cellular functions found in normal hepatocytes (*Roe et al.*, 1993) and can be grown indefinitely for long-term studies. These cells have been used in many toxicity studies for the

screening of hepatotoxic compounds (*Jennen et al.*, 2010; *O'Brien et al.*, 2006). Compared with primary hepatocytes, they have low levels of phase I cytochrome P450 enzymes, but they have normal levels of phase II enzymes (*Westerink and Schoonen*, 2007). HepG2 cells have been used to classify 70% of compounds with known toxicity as cytotoxic. The cytotoxicity of compounds is determined in HepG2 cells with 80% sensitivity and 90% specificity (*O'Brien et al.*, 2006). HepG2 cells have been used to determine genotoxic and nongenotoxic carcinogens. These studies demonstrate that, despite known limitations, HepG2 cells represent a valuable *in vitro* model for hepatotoxicity studies (*Jennen et al.* 2010).

Aim of the study:

The objective of the study reported here was to evaluate the metabolism and hepatotoxic potential of usnic acid in human hepatoblastoma HepG2 cells using different biochemical endpoints.