

Effect of Umbilical Cord Milking on Transition of Preterm Babies during Resuscitation

Thesis

Submitted for the Partial Fulfillment of Master's Degree in **Pediatrics**

By

Ahmed Atef Ahmed El Beltagy

MB.,BCh 2008 Faculty of Medicine, Ain Shams University

Supervised by

Prof. Mohamed Fathalla Mostafa

Professor of Pediatrics Faculty of Medicine-Ain Shams University

Ass. Prof. Nancy Mohamed Abushady

Assistant Professor of Pediatrics Faculty of Medicine-Ain Shams University

Dr. Dina Essam AbdelHamid Rabie

Lecturer of Pediatrics Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Mohamed Fathallah**Mostafa, Professor of Pediatrics, Faculty of Medicine,
Ain Shams University, for his meticulous supervision,
kind guidance, valuable instructions and generous help.

Special thanks are due to Ass. Prof. Maney
Mohamed Abushady, Assistant Professor of
Pediatrics, Faculty of Medicine, Ain Shams University,
for her sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Dina Essam**AbdelTbamid Rabie, Lecturer of Pediatrics, Faculty
of Medicine, Ain Shams University, for her great help,
outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family and my friends for their support till this work was completed.

Ahmed Atef Ahmed El Beltagy

Tist of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	7
List of Figures	8
Introduction	1 -
Aim of the Work	11
Review of Literature	
Placental Transfusion	12
Physiology of Umbilical Cord Clamping	17
Milking of Umbilical Cord in Preterm Babies and Advantages	
Umbilical Cord Milking and Resuscitation	31
■ Delayed Cord Clamping in Preterm Babies	37
Patients and Methods	44
Results	50
Discussion	61
Summary	66
Conclusion	68
References	69
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
ALIC	A
	Area under the variable- time curve
<i>bpm</i>	_
BW	
CI	
<i>CMV</i>	.Cytomegalo virus
<i>CPAP</i>	.Continuous positive airway pressure
<i>CS</i>	.Cesarian section
<i>C-UCM</i>	.Cut- umbilical cord milking
DCC	.Delayed cord clamping
<i>DM</i>	.Diabetes Mellitus
<i>ECG</i>	.Electro cardiography
<i>EIT</i>	.Electrical impedance tomography
<i>F</i>	. Female
Fio2	.Initial Fraction of inspired oxygen
<i>GA</i>	.Gestational age
<i>GDM</i>	.Gestational Diabetes Mellitus
<i>HCT</i>	.Hematocrit
Hgb	. Hemoglobin
HR	.Heart Rate
<i>HTN</i>	.Hypertension
<i>ICC</i>	.Immediate cord clamping
<i>I-UCM</i>	.Intact umbilical cord milking
<i>IVH</i>	.Intraventricular hemorrhage
<i>M</i>	. Male
<i>MAP</i>	.Mean Airway pressure
min	.Minute
MRI	.Magnetic resonance imaging

Tist of Abbreviations cont...

Abb.	Full term
NICU	Neonatal intensive care unit
	Normal vaginal delivery
	Positive end expiratory pressure
	Peak inspiratory pressure
	Positive pressure ventilation
	Premature rupture of membrane
	Standard deviation
	Standard error
sec	
	Systematic lupus erythromatosus
	Peripheral capillary oxygen saturation
	$Umbilical\ cord$
	Umbilical cord milking
	Very low birth weight
	World Health Organization

Tist of Tables

Table No.	Title	Page No.
Table (1):	Five criteria of Apgar score	46
Table (2):	Demographic characteristics of both groups: Numerical variables	
Table (3):	Characteristics of both study Categorical variables	
Table (4):	Changes in Apgar score in both study	groups 53
Table (5):	Serial measurements analysis for the in heart rate	_
Table (6):	Serial measurements analysis for the in SpO ₂	_
Table (7):	Serial measurements analysis for the in FiO ₂	_
Table (8):	Serial measurements analysis for the in PIP	_
Table (9):	Serial measurements analysis for the in MAP	_
Table (10):	Serial measurements analysis for the in PEEP	_
Table (11):	Neonatal follow up and of (intraventricular hemorrhage occurrent)	

Tist of Figures

Fig. No.	Title	Page N	lo.
Figure (1):	Factors influencing placental transwith delayed cord clamping (DCC).		13
Figure (2):	Onset of spontaneous breaths in prinfants following DCC with stime (blue line) and positive proposition (PPV) with DCC (red line)	preterm nulation pressure	
Figure (3):	Schematic of the fetal circulation		
Figure (4):	Placental transfusion through milking with an intact cord (I-UCM)	
Figure (5):	attached to the placenta	CM) is om the t of the	26
	neonatal provider simultaneously resuscitation	y with	28
Figure (6):	Consort Flow Diagram		
Figure (7):	Mean Apgar score at 5 minutes study groups	in both	
Figure (8):	Change in mean heart rate with both study groups	time in	
Figure (9):	Change in mean SpO ₂ with time study groups	in both	
Figure (10):	Change in mean FiO ₂ with time study groups	in both	
Figure (11):	Change in mean PIP with time		
Figure (12):	Change in mean MAP with time study groups	in both	
Figure (13):	Change in mean PEEP with time study groups	in both	

Introduction

The goal of placental transfusion is to facilitate transfer of blood volume from the placenta to the newborn. Fetal blood circulates in the feto-placental unit throughout gestation. Owing to the relatively large size of placenta compared with the fetus at mid-term, blood is equally distributed between the fetus and placenta. By term gestation, about one-third of the blood flows through the placenta and two-thirds flows through the fetus at any point in time (*Backes et al., 2014a*).

Although umbilical cord clamping is a quick and simple intervention, the timing of cord clamping may have a large impact on the infants' health. While it is thought that the major benefit of delayed cord clamping (DCC) is placental transfusion (blood from placenta to the infant), it is now evident that there are many benefits (*Katheria et al.*, 2017).

The effect of milking the cord at birth on blood volume was reported by *Colozzi* in 1954, where he stated" I have seen several infants with asphyxia pallida who were very pale and listless, with a rapid pulse and a very weak cry; with gentle, slow, methodical cord stripping, they were transformed within a few minutes to ruddy, lustily-crying infants" (*Colozzi*, 1954).

Preterm babies managed with milking of the cord have a higher mean arterial blood pressure on admission to the NICU, increased cerebral oxygenation, and improved left ventricular

diastolic function from an increase in left ventricular load due to volume expansion (Takami et al., 2012).

Milking of the cord stabilizes blood pressure and heart rate at and soon after delivery. Some studies have raised a concern about the volume of blood that can be transfused with milking of the cord. The average placental blood volume is estimated to be 75-125 ml (Fogarty et al., 2018).

Clamping the umbilical cord before onset of respiration resulted in an immediate decrease in heart rate from mean values above 160 bpm to mean values around 100 bpm. Pulmonary blood flow remained unchanged at the low levels present during fetal life. Flow through the ductus arteriosus remained right to left as in fetal life; and right ventricular output fell progressively during the first 90 seconds and remained low until ventilation began at 2 min. With cord clamping a sudden spike occurred in carotid artery pressure followed by equilibrium of pressure; this was paralleled by a sharp increase in carotid arterial flow followed by a large fall (Niermeyer & Velaphi, 2013).

AIM OF THE WORK

rimary outcome is to investigate the influence of active umbilical cord Milking before cord clamping compared with immediate cord clamping on cardio respiratory outcomes of preterm babies requiring resuscitation (Oxygen saturation, Heart rate and Fio₂) born between 28 and 34 completed weeks of gestation during neonatal resuscitation programme.

Secondary outcome is to follow up occurrence of intraventricular hemorrhage in preterm babies.

Chapter 1

PLACENTAL TRANSFUSION

ne essential goal of neonatal critical care is to deliver adequate oxygen to meet tissue demand. Increasing fetal hemoglobin by placental transfusion is an extremely effective method of enhancing arterial oxygen content, increasing cardiac output and improving oxygen delivery. Placental transfusion is the transfer of residual placental blood to the baby during the first few minutes of age, and can be accomplished by three different methods (*Katheria et al.*, 2017):

- ➤ Delayed cord clamping (DCC)
- ➤ Intact umbilical cord milking (I-UCM)
- > Cut-umbilical cord milking (C-UCM).

Immediate cord clamping (ICC) results in $\sim 30\%$ of fetoplacental blood volume remaining in the placenta, whereas DCC reduces residual placental blood to 20% of the fetoplacental blood volume by 60 sec and to 13% by $\sim 3-5$ min (*Katheria et al., 2017*).

Factors determining placental transfusion

Several factors including cord clamping time, uterine contractions, umbilical blood flow, respirations and gravity have an important role in determining placental transfusion volumes (*Katheria et al.*, 2017).

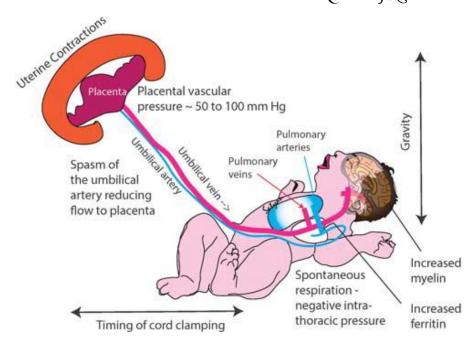


Figure (1): Factors influencing placental transfusion with delayed cord clamping (DCC). Timing of cord clamping, uterine contractions, reduced neonate-to-placental flow due to umbilical arterial spasm, spontaneous respirations and gravity influence the magnitude of transfusion. Reported long-term benefits are shown (*Katheria et al.*, 2017).

1. Time of cord clamping

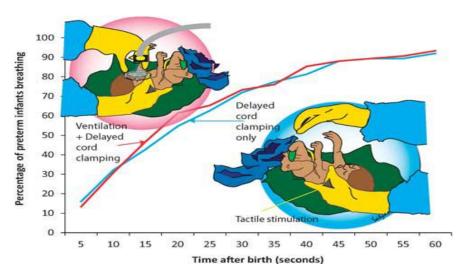
The mean amount of placental transfusion was 81 ml (range, 50–163 ml) or 25 ml/ kg (range, 16–45 ml/ kg). The authors estimated that placental transfusion contributed to about 20% of the infant's blood volume at birth (*Farrar et al., 2011*).

In term and preterm births, DCC results in more blood being transferred to the infant and is proportional to the time delayed (*Boere et al.*, 2015).

2. Uterine contractions

Uterine contractions are the primary determinant of placental transfusion in spontaneous deliveries with DCC. The initial uterine contraction that expels the fetus contributes to 25–30% of placental transfusion. The intrauterine umbilical venous pressure is high (~40–50 mm Hg in between contractions and increasing to 100 mm Hg during contractions) and provides a gradient for blood flow from the placenta to the neonatal right atrium may facilitate 50% of placental transfusion (*Katheria et al.*, 2017).

3. Umbilical blood flow


During fetal life ~ 29% of the combined ventricular output (equivalent to 130 ml/kg fetal body weight) flows through the umbilical arteries to the placenta and returns to the fetus via the umbilical vein. After birth, during the third stage of labor, the umbilical arteries constrict, often within 45 sec, minimizing blood flow from the neonate to the placenta, whereas the umbilical vein remains patent facilitating placental transfusion (*Boere et al.*, 2015).

4. Spontaneous breathing and respirations

Spontaneous breathing and crying creates negative intrathoracic pressure and increases the gradient between placental vasculature and fetal right atrium facilitating placental transfusion (*Katheria et al.*, 2017).

Intermittent flow every 1.5 sec in the umbilical vein by Doppler of the umbilical cord possibly reflecting a respiratory rate of 40 per min. However, in the presence of strong uterine contractions (with pressure gradients of ~ 100 mm Hg), respiration does not appear to further enhance placental transfusion (*Kluckow and Hooper*, 2015).

Following cesarean section with absent uterine contractions, spontaneous respiration might have a more important role in facilitating placental transfusion. Residual placental blood volume and change in hematocrit were measured. Increasing duration of respiration resulted in increasing amounts of placental transfusion. Positive pressure ventilation (PPV) increases intrathoracic pressure. PPV increases pulmonary blood flow and reduces pulmonary vascular resistance, but its effect on placental transfusion is not clear (*Katheria et al., 2017*).

Figure (2): Onset of spontaneous breaths in preterm infants following DCC with stimulation (blue line) and positive pressure ventilation (PPV) with DCC (red line) (*Katheria et al.*, 2017).