

Anti-Angiogenic Efficacy of Chitosan- Gallium Nanoparticles and Low Doses of γ -irradiation on Mice Bearing Ehrlich Carcinoma

A Thesis

Submitted for the degree of Master of Science as a Partial Fulfillment for requirements of the Master of Science in Biochemistry

Bv

Riham Mahmoud Mohammad Abdel Mawla B.Sc. Biochemistry/Chemistry (2012)

Under Supervision of

Prof. Dr. Eman Ibrahim Kandil

Professor of Biochemistry, Biochemistry Department Faculty of Science, Ain Shams University

Prof. Dr. Abdelfattah Mohsen Badawi

Professor Researcher of Applied chemistry Egyptian Petroleum Research Institute

Prof. Dr. Neamat Hanafi Ahmed

Professor Researcher of Cell biology and Histology National Center for Radiation research and Technology Atomic Authority

Faculty of Science
Ain Shams University
2019

Anti-Angiogenic Efficacy of Chitosan- Gallium Nanoparticles and Low Doses of γ -irradiation on Mice Bearing Ehrlich Carcinoma

A Thesis
Submitted in Partial Fulfillment of the Requirements for the
Master Degree of Science
in Biochemistry

By

Riham Mahmoud Mohammad Abdel Mawla B.Sc. Biochemistry/Chemistry (2012)

Faculty of Science
Ain Shams University
2019

Dedication

I dedicate this work with all my love to my family and for all my friends and those from whom I have learned, whenever and wherever they are.

Riham Mahmoud

Acknowledgment

First of all, Thanks first and last to *ALLAH*, to whom I relate any success in my life. Words stand short when they come to express my gratefulness to my supervisors.

I am really grateful to express my gratitude, appreciation and thanks to *Prof. Dr. Eman Ibrahim Kandil*, Professor of Biochemistry, Biochemistry Department, faculty of Science, Ain Shams University for her relentless support, splendid efforts, advice and her time, attention and guidance needed to let this thesis be completed.

I would like to express my profound gratitude and cordial appreciation to my eminent *Prof. Dr. Abdelfattah Mohsen Badawi*, Professor of Applied chemistry, Egyptian Petroleum Research Institute, for his moral support, valuable supervision, honest help, encouragement, keep interest and guidance throughout the performance of this work.

I am deeply grateful and deep appreciations are due to *Prof. Dr. Neamat Hanafi Ahmed*, Professor of Cell biology and Histology, National Center for Radiation research and Technology, Atomic Authority, for her supervision, encouragement, providing a lot of facilities, helpful discussions, directions, beneficial advice and continuous support and definitely, for her, no words of praise are sufficient.

Contents

Abstract	
List of Abbreviations	I
List of Figures	IV
List of Tables	VIII
Introduction	1
Aim of the work	6
1.Review of Literature	7
1.1.Cancer	7
1.1.1.Factors Involved in Cancer Development	8
ABiological Factors	8
BExternal Factors	10
1.1.2.Types of cancer:	13
1.1.3. Cancer treatment:	16
ASurgery	17
BRadiotherapy	17
CCancer chemotherapy	22
1.2Angiogenesis	24
1.2.1Angiogenic promotors	26
1.2.2Angiogenic inhibitors	30
1.2.3The mechanism of angiogenesis:	31
1.2.4Angiogenesis in cancer	33
1.2.5Antiangiogenic treatment of cancer	36
1.3Reactive oxygen species (ROS)	37
1.3.1Reactive Oxygen Species and Cancer	38
1.3.2Role of Free Radicals in Cancer Development	40
1.3.3Reactive Oxygen Species and Antioxidant Systems	41
1.3.4Impact of Oxidative Stress on different tissues	43
1.4. Inflammation and cancer	46

	1.4.1Tumor Necrosis Factor- alpha (TNF-α)	48
	15 Apoptosis	50
	1.5.1Caspase -3	51
	1.6Nanotechnology in cancer treatment	53
	1.6.1Tumor targeting	53
	1.6.2Cancer treatment	55
	1.6.3Drug delivery	56
	1.7Chitosan	56
	1.7.1Structure of chitosan	57
	1.7.2Antitumor effect of chitosan	59
	1.7.3Biodegradability and safety of chitosan	60
	1.7.4Sustained release provided by ChNPs	60
	1.7.5In vivo metabolic processing of ChNPs	61
	1.8Gallium nanoparticles	62
	1.8.1Anti-tumor effect of gallium	63
	1.8.2Transport and Cellular Uptake of Gallium	64
2	Materials and Methods	
	2.1Materials	
	2.1.1Experimental Animals	66
	2.1.2Radiation Facility	67
	2.1.3Tumor Transplantation	67
	2.1.4Preparation of Gallium-Chitosan nanoparticles	67
	2.1.5In vitro study cytotoxicity of Ch.GaNPs	68
	2.1.6Experimental Design	69
	2.1.7Biological Samples Preparation	70
	2.2Methods	71
	2.2.1Measurement of Tumor Size	
	2.2.2Assessment of angiogenic response	71
	AVascular endothelial cell growth factor (VEGF)	

BPlatelet-derived growth factor (PDGF)	77
2.2.3 Assessment of inflammatory response	84
ATumor necrosis factor-alpha (TNF- α) level	84
2.2.4 Assessment of apoptotic response	89
ACaspase-3(CASP-3) level	89
2.2.5Assessment of Oxidative Stress and Antioxidant Activities	•
ADetermination of Lipid Peroxidation Level	95
BDetermination of Reduced Glutathione Content	97
CDetermination of Glutathione peroxidase	98
2.2.6. Histopathological Examination	101
2.2.7. Characterization of cell death (apoptosis)	102
2.2.8. Statistical Analyses	103
3Results	105
3.1Characterization of Chitosan-Gallium nanoparticles (Ch.GaNPs)	105
3.2Chemosensitivity of Ch.GaNPs on Ehrlich ascite card (EACs) cells.	
3.3Monitoring of Ehrlich tumor size	
3.4Angiogenesis regulators	112
3.4.1. Vascular Endothelial Growth Factor (VEGF) and derived growth factor (PDGF) levels	
3.5Inflammatory response	116
3.5.1Tumor Necrosis Factor Alpha (TNF-α) levels	116
3.6Apoptosis regulator	119
3.6.1Caspase-3 (Casp-3) levels	119
3.7Antioxidant and histopathological status of different to female mice bearing Ehrlich Carcinoma	
3.7.1. Ehrlich carcinoma tumor tissue	122
ILipid peroxidation (LPO) levels and Antioxidant Status	122

different animal group126
IIIApoptotic and necrotic examination of Ehrlich carcinoma in different experimental group
3.7.2. Liver tissue
ILipid peroxidation (LPO) Levels and Antioxidant status
IIHistopathological Examination of Liver Tissue
III Apoptotic and necrotic examinations in liver tissue of mice bearing Ehrlich carcinoma:
3.7.3. Kidney tissue
ILipid peroxidation (LPO) Levels and Antioxidant status
IIHistopathological examination of kidney tissue of mice bearing Ehrlich carcinoma
IIIApoptotic and necrotic examination in kidney tissue of the Ehrlich carcinoma
3.7.4. Spleen tissue
ILipid peroxidation (LPO) Levels and Antioxidant status
IIHistopathological examination of spleen tissue of mice bearing EC
IIIApoptotic and necrotic examination of spleen tissue in female mice bearing EC:
4Discussion
Summary
References
الملخص العربي

Rist of Abbreviations

5-FU	5-Fluorouracil
Ab	antibody
Ang's	Angiopoietins
ATI	After Tumor Inoculation
ATP	Adenosine triphosphate
BAX	Bcl 2–associated X protein
BCAAs	Branched-Chain Amino Acids
Bcl.2	B-cell lymphoma-2
bFGF	basic Fibroblast Growth Factor
BSSP4	Brain-Specific Serine Protease 4
Ch.GaNPs	Chitosan Gallium nanoparticles
ChNPs	Chitosan nanoparticles
CRP	C-Reactive Protein
CSFs	Colony-Stimulating Factors
CYP450	Cytochromes P450
DLL4	Delta like ligand 4
DNA	Deoxyribonucleic Acid
dNTP	deoxyribonucleotide triphosphate
DSBs	double strand breaks
DTNB	5, 5'dithiobis-(2-nitro-benzoic acid)

E.IR	Ehrlich carcinoma irradiated group
EAC	Ehrlich ascites carcinoma
EC	Ehrlich carcinoma
ECF	extracellular fluid
ECM	Extracellular Matrix
EGF	Epidermal Growth Factor
ELISA	Enzyme Linked Immune Sorbent Assay
EPR	Enhanced Permeability and Retention
ETC	Electron Transport Chain
Ga	Gallium
GBM	glioblastoma multiforme
GSH	Reduced Glutathione
GSH-Px	Glutathione Peroxidase
GSSG	Glutathione in oxidized form
Gy	Gray
HIFs	Hypoxia-Inducible Factors
НО-1	Hemeoxygenase-1
HRP	Horseradish Peroxidase
i.p	intraperitoneal
IC50	half maximal inhibitory concentration
IFN-γ	Interferon-gamma
I-kB	Inhibitor kappa B

IL-1b	Interleukin 1-beta
IR	Ionizing Radiation
LET	Linear Energy Transfer
MDA	Malondialdehyde
MMP	Matrix Metalloproteinases
MPS	Macrophage Phagocytic System
mROS	mitochondrial ROS
MT	Metallothionein
MTD	Maximum Tolerated Dose
N.C	Normal control
NADH	Nicotinamide adenine dinucleotide
NADPH	Nicotinamide Adenine Dinucleotide
NCRRT	National Center for Radiation Research and Technology
NF-κB	Nuclear Factor-κB
NOXs	NADPH oxidases
NPs	Nanoparticles
O.D	optical density
PBS	Phosphate buffer solution
PDGF	Platelet-derived growth factor
PIGF	Placental growth factor
r.p.m	Revolutions Per Minute

RNA	Ribonucleic Acid
ROS	Reactive Oxygen Species
S.C	subcutaneous
SPSS	Statistical Package for Social Science
TBA	Thiobarbituric acid
TCA	Trichloro acetic Acid
TEM	Transmission Electron Microscope
Tf	Transferrin
TFR	Transferrin receptor
TGF-α	Transforming growth factor-α
Th	T helper cell
TMB	Tetramethylbenzidine
TNF-α	Tumor Necrosis Factor-Alpha
TSTA	Tumor Specific Transplantation Antigen
VCAM-1	vascular cell adhesion molecule 1
VEGF	Vascular endothelial growth factor
VEGFR	Vascular endothelial growth factor receptor
WHO	World Health Organization

Eist of Figures

Figure	Title	Page
Figure (1)	Angiogenesis and vasculogenesis in normal cell.	33
Figure (2)	Angiogenesis steps in tumor vascularization.	36
Figure (3)	Structure of Glutathione.	42
Figure (4)	Caspase-3 apoptotic pathways.	52
Figure (5)	Structure of chitosan.	58
Figure (6)	Standard curve of VEGF.	76
Figure (7)	Standard curve of TNF-α.	89
Figure (8)	Standard curve of Casp-3.	94
Figure (9)	Characterization of Chitosan-Gallium nanoparticles	105
Figure (10)	The effect of Ch.GaNPs on the viability of EAC cells.	108
Figure (11)	Effect of Ch.GaNPs and/or γ-radiation on tumor size of mice bearing EC.	111
Figure (12)	Percent change of VEGF and PDGF level in different animal groups, mice-bearing E.C treated with Ch.GaNPS and/ or γ -irradiation compared to E.C group.	115

Figure (13)	Percent change of TNF- α level in different animal groups, mice-bearing EC treated with Ch.GaNPS and γ -irradiation compared to E.C group.	118
Figure (14)	Percent change of CASP-3 level in different animal groups, mice-bearing EC treated with Ch.GaNPS and γ-irradiation compared to E.C group	121
Figure (15)	Percent change of tumor LPO, GSH and GSH-Px in mice-bearing EC treated with Ch.GaNPS and/or γ -irradiation compared to EC group.	125
Figure (16)	Photomicrograph of Ehrlich carcinoma bearing mice represents (A): control EC in mice. (B): treated with Ch.GaNPs. (C): exposed to low doses of γ - radiation. (D): treated with Ch.GaNPs and exposed to low doses of γ - radiation.	127
Figure (17)	Fluorescent imaging of sections in Ehrich Carcinoma representing control EC in mice	129
Figure (18)	Fluorescent imaging of sections in EC represents (A): exposed to low doses of γ -radiation. (B): treated with Ch.GaNPs. (C): treated with Ch.GaNPs and exposed to low doses of γ - radiation.	130
Figure (19)	Percent change of liver LPO, GSH and GSH-Px in mice-bearing EC treated with Ch.GaNPS and/or γ-irradiation compared to NC group.	134

Figure (20)	Percent change of liver LPO, GSH and GSH-Px in mice-bearing EC treated with Ch.GaNPS and/or γ-irradiation compared to EC group	134
Figure (21)	Photographs of sections in liver of mice. A, B: Normal control sections. C&D: Liver sections of mice bearing EC	137
Figure (22)	Photographs of sections in liver of mice bearing EC. A, B: Liver sections of mice bearing EC exposed to γ - radiation. C, D: Ch.GaNPS treated group. E, F: treated with Ch.GaNPs and exposed to low doses of γ -radiation.	138
Figure (23)	Fluorescent imaging of liver sections represents (A): Section in normal liver. (B): bearing Ehrlich carcinoma. (C): exposed to low doses of γ - radiation. (D): treated with Ch.GaNPs. (E): treated with Ch.GaNPs and exposed to low doses of γ - radiation.	140
Figure (24)	Percent change of kidney LPO, GSH and GSH-Px in mice-bearing EC treated with Ch.GaNPS and/or γ-irradiation compared to NC group.	144
Figure (25)	Percent change of kidney LPO, GSH and GSH-Px in mice-bearing EC treated with Ch.GaNPS and/or γ -irradiation compared to EC group.	144
Figure (26)	Photomicrographs of sections in kidney of mice. A: Section in normal kidney. B&C: Section in kidney of mice bearing EC	146