CHEMOINFORMATIC STUDY ON SOME FUNGAL PECTINASES INHIBITORS

By

RASHA ABDEL KADER MOHAMED ELSAYED

B.Sc. Agric. Sc. (Agric.Biochem.), Faculty of Agric., Cairo Univ. 2008 M.Sc. Agric. Sc. (Agric.Biochem.), Faculty of Agric., Ain Shams Univ. 2014

A Thesis Submitted in Partial Fulfilment
Of
the Requirements for the Degree of

in
Agricultural Sciences
(Agricultural Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
Ain Shams University

Approval Sheet

CHEMOINFORMATIC STUDY ON SOME FUNGAL PECTINASES INHIBITORS

By

RASHA ABDEL KADER MOHAMED ELSAYED

B.Sc. Agric. Sc. (Agric.Biochem.), Faculty of Agric., Cairo Univ. 2008 M.Sc. Agric. Sc. (Agric.Biochem.), Faculty of Agric., Ain Shams Univ. 2014

This thesis fo	r Ph.D. deg	ree l	has been appi	roved by:		
Dr. Emad Sa	bry Shaker				••••	
Professor	of Agricult	ıral l	Biochemistry,	Faculty of Agric	culture, Mi	nia
University	у.					
Dr. Hany Ab	d El-Khale	k Ma	ahmoud	•••••	•••••	
Professor	of Agricult	ural	Biochemistry	, Faculty of Ag	riculture, A	Ain
Shams Ur	niversity.					
Dr. Ragy Ria	d Francis			•••••	•••••	
Professor	Emeritus	of	Agricultural	Biochemistry,	Faculty	of
Agricultu	re, Ain Shar	ns U	niversity.			

Date of Examination: 9 / 12 / 2019

CHEMOINFORMATIC STUDY ON SOME FUNGAL PECTINASES INHIBITORS

By

RASHA ABDEL KADER MOHAMED ELSAYED

B.Sc. Agric. Sc. (Agric.Biochem.), Faculty of Agric., Cairo Univ. 2008 M.Sc. Agric. Sc. (Agric.Biochem.), Faculty of Agric., Ain Shams Univ. 2014

Under the supervision of:

Dr. Ragy R. Francis

Professor Emeritus of Agricultural Biochemistry, Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

Dr. Khaled M. Ameen. Ramadan

Associate Professor of Agricultural Biochemistry, Department of Agricultural Biochemistry, Faculty of Agriculture, AinShams University.

Dr. Sameh, E. Hassanein

Senior Researcher of Genetics, Bioinformatics and Computer Networks Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt.

ABSTRACT

Rasha Abdel Kader Mohamed: Chemoinformatic Study on some Fungal Pectinases Inhibitors. Unpublished Ph.D. Thesis, Department of Biochemistry, Faculty of Agriculture, Ain Shams University, 2019.

Fusarium oxysporum f. sp. Lycopersici attacks tomato plants andcauses wilt disease. Fusarium Pathogenicity includes pectinases enzymes that enable the fungal penetration into the host cell wall.

The present study is focused on using Computational tools such as Auto-Dock program for screening of inhibitors of endo and exopolygalacturonase enzymes. It is based on a Lamarckian Genetic Algorithm (LGA) that estimates the binding energy and inhibition constant as parameters to select the best binding. The binding energy, Inhibition constant and amino acids interactions for the selected inhibitors were compared with that of the enzyme-substrate (sodium polygalacturonate). Allium species such as onion plant have been used widely as antimicrobial and antifungal plants. It contains 1 and 5 % of non-protein sulfur amino-acids, including S-E-prop-1-enyl-L-cysteine S-oxide, S-3-allylsulphinyl-L-alanine and S-methylcysteine sulfoxide which have satisfactory binding interactions and inhibition constant with endo and exopolygalacturonase. In the present study, these compounds were extracted from white onion bulb Giza 20 and detected in the onion extract LC/MS analysis. The Inhibitory effect of these compounds for endo and exopolygalacturonases enzymes were confirmed experimentally by determination of the enzyme activity in the presence and the absence of these compounds in onion extract. White onion extract has 45% inhibition percentage of the endo and exopolygalacturonases activity. The enzyme kinetic study showed an increase in the Km value with stable V-max value in presence of 7μg/μL of the onion extract. Also, the *In-vitro* experiment of inhibition of F. oxysporum growth in presence of 20% and 40% of onion extract showed inhibition percentages of 47% and 53% respectively. Also, the *In-vivo* experiment of inhibition of *F. oxysporum* growth in presence of 10% ,20% and 40% of onion extract confirmed that presence inhibition percentage for onion extract The results concluded that onion extract inhibits Fusarium growth through inhibition of exo and endopolygalacturonases. The inhibitory effect of onion extract could be due to its contents of S-E-prop-1-enyl-L-cysteine S-oxide, S-3-allylsulphinyl-L-alanine, and S-methylcysteine sulphoxide. These compounds have excellent binding interactions and inhibition effects on both exo-and endo-polygalacturonases enzymes of *Fusarium oxysporumf. sp. Lycopersici*. In the present study, we strongly recommend usingthese compounds in the control of *Fusarium oxysporum f. sp. Lycopersici* infestation.

Keywords: Chemoinformatic, Auto-Dock program, *Fusarium* oxysporum, Pectinases, Endopolygalacturonase, Exopolygalacturonase, Onion extract

ACKNOWLEDGMENT

Thanks for my God Allah, the great and almighty on his uncountable and infinite graces.

I would like to deepest thank Prof. Dr. RagyRiad Francis, Professor of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University for his kind supervision and his energetic follow-up during preparing and writing the thesis

Also, I would like to thank Dr. Khaled Mohamed Ameen Ramadan, Associate Professor of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University for his supervision and for providing all the facilities in work and writing the thesis.

Also, I would like to thank Dr. Sameh El-Sayed Hassanein senior of Bioinformatics of Computer Network Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt, for his supervision and joining me to his laboratory after my graduation and Writing the thesis.

I would like to thank Dr. Ahmed Zein Abdel Aziz, Professor Faculty of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt, for offering my first step on the scientific research road and for his valuable advice and guidance in writing the thesis.

Thanks are extended to staff members of my laboratory Plant-Pathogen Interaction (PPI) and also for the staff members of the Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt.

Thanks are also extended to my parents and brothers and my husband for their patience and encouragement during this work

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	IV
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	
2.1 Tomato plant	5
2.2 Fusarium wilt fungi	6
2.3 Pectin.	8
2.4 Pectinases enzymes	9
2.5 Chemoinformatics	10
2.6 Docking method	11
2.7 Onion plant	12
3.MATERIALS AND METHODS	
3.1 Plant materials.	15
3.2 Methods of analysis	15
3.2.1 Databases and Softwares	15
3.2.2 Pectinases enzyme production and extraction of inhibitors	17
3.2.3 LC/MS analysis	17
3.2.4 Endo and exopolygalacturonases enzymes inhibition assay.	17
3.2.5 Kinetic study	19
3.2.6 <i>In-vitro</i> evaluation of <i>F. oxysporum f.sp.Lycopersici</i>	
inhibition efficiency by onion extract	19
3.2.7 <i>In -vivo</i> experiment to evaluate the inhibition efficiency by	
onion extract	20
4. RESULTS AND DISCUSSION	
4.1 Prediction of the 3D structure of endopolygalacturonase	
enzyme EC3.2.1.15 of Fusarium oxysporum f.sp.Lycopersici	21
4.1.1 Endopolygalacturonase domain	21

	Page
4.1.2 Sodium polygalacturonate	21
4.1.3 S-3-allylsulphinyl-L-alanine compound	41
4.1.4 E-prop-1-enyl-L-cysteine S-oxide compound	42
4.1.5 S-methylcysteine sulfoxide compound	43
4.2 Prediction of 3D structure for exopolygalacturonase enzyme	
EC3.2.1.82	46
4.3 Comparison between substrate and inhibitor	51
4.4 LC/MS scan	52
4.5 Inhibition of endo and exopolygalacturonases by onion	
extract and kinetics study	53
4.6 <i>In-Vitro</i> evaluation of <i>F. oxysporum</i> inhibition of onion	
extract	54
4.7 <i>In-Vivo</i> evaluation of <i>F. oxysporum</i> inhibition of onion extract	55
4.8 Conclusion.	56
V. SUMMARY	57
VI. REFERENCES	59
ARABIC SUMMARY	
VIII. LIST OF ABBRIVATION	XII

LIST OF TABLES

No.		Page
1	Endo and exopolygalacturonases assay reagents	18
2	Comparative to PDB Hit, C-score, active site	
	residues for a predicted model of	
	endopolygalacturonase in the different organisms	
	for endopolygalacturonase	23
3	Comparative to C-score, PDB file to	
	endopolygalacturonase, ligand name, ligand	
	location in the different organisms for	
	endopolygalacturonase enzyme	23
4	Comparative evaluation of Inhibition constant-	
	binding energy and binding site of some pectinase	
	inhibitors (terpenoids, alkaloids, flavonoids,	
	phenolic and sulfur compounds) with	
	endopolygalacturonase enzyme	26
5	Comparative evaluation of (Inhibition constant-	
	binding energy- Binding site) of some inhibitors in	
	onion extract for endopolygalacturonase enzyme	44
6	Comparative to PDB Hit, C-score, Active Site	
	Residues for predicted model of	
	exopolygalacturonase in the different organisms for	
	exopolygalacturonase	48
7	Comparative to C-score, PDB file to	
	exopolygalacturonase, ligand name, ligand location	
	number in the different organisms to	
	exopolygalacturonase	48
8	Comparative evaluation of (Inhibition constant-	
	binding energy – Binding site) of some inhibitors in	
	onion extract for (exopolygalacturonase enzyme)	49

LIST OF FIGURES

No		Page
1	Production cycle of alkenyl-L-cysteine sulfoxides	
	(ACSOS) in onion plant.	14
2	3D structure of (Glyco_hydro _28) Domain for	
	endopolygalacturonase enzyme.	22
3	2D structure for Sodium polygalacturonate	
	compound.	22
4	The overall 3D view of endopolygalacturonase	
	interacts with the substrate in the active site.	24
5	Showing H bond between the ligand sodium	
	polygalacturonate and important amino acid	
	residues within the active site of the	
	endopolygalacturonase enzyme.	25
6	Showing H bond between the ligand (allicin	
	diallylthiosulfinate compound) and important	
	amino acid residues within the active site of	
	endopolygalacturonase enzyme.	26
7	Showing H bond between the ligand	
	(allylisothiocyanate compound) and important	
	amino acid residues within the active site of	
	endopolygalacturonase enzyme.	26
8	Showing H bond between the ligand ((E)-ajoene	
	compound) and important amino acid residues	
	within the active site of endopolygalacturonase	
	enzyme.	27
9	Showing H bond between the ligand 3-vinyl-1,2-	
	dithiin compound and important amino acid residues	
	within the active site of endopolygalacturonase	
	enzyme.	27
10	Showing H bond between the ligand allyltrisulfide	

No		Page
	compound and important amino acid residues within	
	the active site of the endopolygalacturonase enzyme.	28
11	Showing H bond between the ligand gamma-	
	Glutamyl-S-allylcysteine compound Ligand and	
	important amino acid residues within the active	
	site of endopolygalacturonase enzyme.	28
12	Showing H bond between the ligand thymol	
	compound and important amino acid residues	
	within the active site of the	
	endopolygalacturonase enzyme.	29
13	Showing H bond between the ligand alpha-	
	terpinyl acetate compound and important amino	
	acid residues within the active site of the	
	endopolygalacturonase enzyme.	29
14	Showing H bond between the ligand anethole	
	compound and important amino acid residues	
	within the active site of endopolygalacturonase	
	enzyme.	30
15	Showing H bond between the ligand borneol	
	compound and important amino acid residues	
	within the active site of endopolygalacturonase	
	enzyme.	30
16	Showing H bond between the ligand caffeic acid	
	compound and important amino acid residues	
	within the active site of the	
	endopolygalacturonase enzyme.	31
17	Showing H bond between the ligand carvacrol	
	compound and important amino acid residues	
	within the active site of the	31
18	Showing H bond between the ligand cinnamaldehyde	
	compound and important amino acid residues within	
	= -	

		Page
	the active site of the endopolygalacturonase enzyme.	32
19	Showing H bond between the ligand coumaric	
	acid compound and important amino acid residues	
	within the active site of the	
	endopolygalacturonase enzyme.	32
20	Showing H bond between the ligand zingiberene	
	compound and important amino acid residues	
	within the active site of the	
	endopolygalacturonase enzyme.	33
21	Showing H bond the between lupenone compound	
	and important amino acid residues within the	
	active site of endopolygalacturonase enzyme.	33
22	Showing H bond between the ligand eugenol	
	compound and important amino acid residues	
	within the active site of the	
	endopolygalacturonase enzyme.	34
23	Showing H bond between the ligand limonene	
	compound and important amino acid residues	
	1 1	
	within the active site of the	
	within the active site of the endopolygalacturonase enzyme.	34
24	endopolygalacturonase enzyme.	34
24	endopolygalacturonase enzyme. Showing H bond between the ligand betulin	34
24	endopolygalacturonase enzyme.	34
24	endopolygalacturonase enzyme. Showing H bond between the ligand betulin compound and important amino acid residues within the active site of the	34 35
24	endopolygalacturonase enzyme. Showing H bond between the ligand betulin compound and important amino acid residues	
	endopolygalacturonase enzyme. Showing H bond between the ligand betulin compound and important amino acid residues within the active site of the endopolygalacturonase enzyme.	
	endopolygalacturonase enzyme. Showing H bond between the ligand betulin compound and important amino acid residues within the active site of the endopolygalacturonase enzyme. Showing H bond between the ligand	
	endopolygalacturonase enzyme. Showing H bond between the ligand betulin compound and important amino acid residues within the active site of the endopolygalacturonase enzyme. Showing H bond between the ligand betulinaldehyde compound and important amino	
	endopolygalacturonase enzyme. Showing H bond between the ligand betulin compound and important amino acid residues within the active site of the endopolygalacturonase enzyme. Showing H bond between the ligand betulinaldehyde compound and important amino acid residues within the active site of the	35
25	endopolygalacturonase enzyme. Showing H bond between the ligand betulin compound and important amino acid residues within the active site of the endopolygalacturonase enzyme. Showing H bond between the ligand betulinaldehyde compound and important amino acid residues within the active site of the endopolygalacturonase enzyme.	35

No		Page
	endopolygalacturonase enzyme.	36
27	Showing H bond between the ligand linalool	
	compound and important amino acid residues	
	within the active site of endopolygalacturonase	
	enzyme.	36
28	Showing H bond between the ligand	
	methylchavicol bornylacetat compound and	
	important amino acid residues within the active	
	site of endopolygalacturonase enzyme.	37
29	Showing H bond between the ligand	
	pentadecanoic acid compound and important	
	amino acid residues within the active site of the	
	endopolygalacturonase enzyme.	37
30	Showing H bond between the ligand piperine	
	compound and important amino acid residues	
	within the active site of the	
	endopolygalacturonase enzyme.	38
31	Showing H bond between the ligand rubrenolide	
	compound and important amino acid residues	
	within the active site of the	
	endopolygalacturonase enzyme	38
32	Showing H bond between the ligand salicylic acid	
	compound and important amino acid residues	
	within the active site of the	
	endopolygalacturonase enzyme.	39
33	Showing H bond between the ligand	
	paraphaeosphaeride A compound and important	
	amino acid residues within the active site of	
	endopolygalacturonase enzyme.	39
34	Showing H bond between the ligand 2-(1-	
	hydroxydodecylidene)cyclohexane-1,3-dione	