

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

High Performance Data Converter for Video Application

A Thesis

Submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

Submitted by

Mohamed Saeed Abdel-Aziz

B.Sc. of Electrical Engineering
(Electronics and Communications Engineering)
Ain Shams University, 2004

Supervised By

Prof. Hisham S. Haddara
Dr. Mohamed Ameen Dessouky

Cairo, 2011

Examiners' Committee

Name:	Mohamed Saeed Abdel-Aziz	
Thesis:	High Performance Data Converter for Video A	pplication
Degree:	Master of Science in Electrical Engineering	
Title, Name	and Affiliation	Signature
Date:		

STATEMENT

This dissertation is submitted to Ain Shams University for

the degree of Master of Science in Electrical Engineering

(Electronics and Communications Engineering).

The work included in this thesis was carried out by the

author at the Electronics and Communications Engineering

Department, Faculty of Engineering, Ain Shams University,

Cairo, Egypt.

No part of this thesis was submitted for a degree or a

qualification at any other university or institution.

Name: Mohamed Saeed Abdel-Aziz

Signature:

Date:

Curriculum Vitae

Name of Researcher Mohamed Saeed Abdel-Aziz

Date of Birth 7/9/1981

Place of Birth Egypt

First University Degree B.Sc. in Electrical Engineering

Name of University Ain Shams University

Date of Degree June 2004

ABSTRACT

Mohamed Saeed Abdel-Aziz, High Performance Data Converter for

Video Application, Master of Science dissertation, Ain Shams University,

2010.

This dissertation demonstrates the design of a standard CMOS high

performance Analog-to-Digital Converter (ADC). It begins with an

introduction to Analog to Digital Conversion. Basic definitions for

performance metrics, different types of ADC's is discussed briefly &

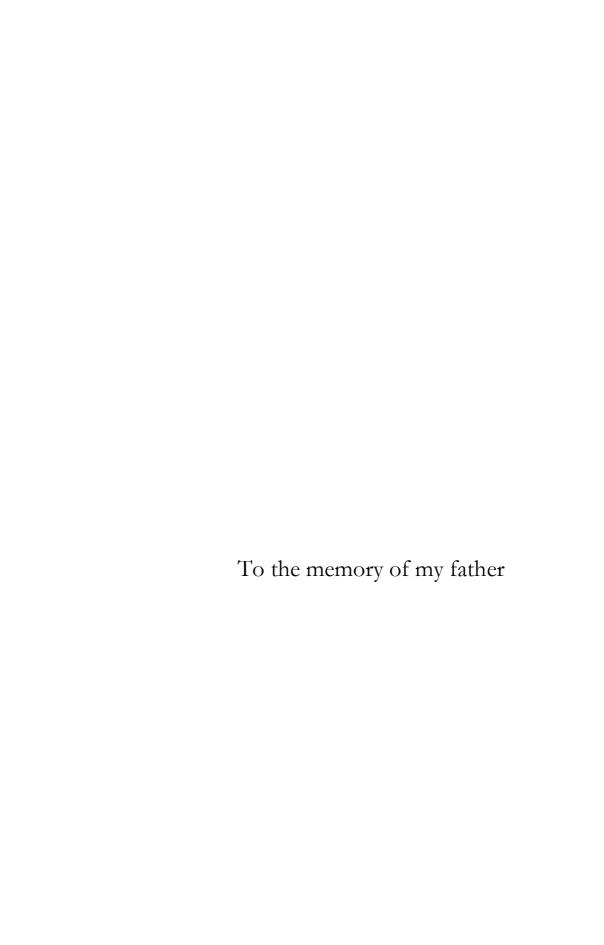
choosing the proper topology which is Pipelined ADC.

Next, it presents in more details the operation of Pipelined ADC,

building blocks & main sources of errors. An automated system level

design procedure is explained, and the circuit design of a prototype ADC

with commercial specs in standard CMOS technology is presented. All


blocks of the system are analyzed, designed, and simulated, then post

layout simulated.

Finally, experimental results for a commercial ADC previously

designed using the same method is presented.

Key words: CMOS, Pipelined, FOM, Quantization, Video.

ACKNOWLEDGEMENT

إِنَّ فِي خَلْقِ ٱلسَّمَوَّتِ وَٱلْأَرْضِ وَٱخْتِلَفِ ٱلَّبْلِ وَٱلْبَارِ لَا يَسْتِ لِأُولِي ٱلْأَلْبَبِ ﴿ ٱلْأَبْبِ ﴿ ٱلْأَبْبِ ﴿ ٱلْأَبْبِ ﴿ اللَّهِ مَا يَكُونُ ٱللَّهُ قِيْمًا وَقُعُودًا وَعَلَىٰ جُنُوبِهِمْ وَيَتَفَكُّرُونَ فِي خَلْقِ ٱلسَّمَوَتِ وَٱلْأَرْضِ رَبَّنَا مَا خَلَقْتَ هَذَا بَطِلاً سُبْحَننَكَ فَقِنَا عَذَابَ ٱلنَّارِ ﴿ ﴾ خَلْق ٱلسَّمَوَتِ وَٱلْأَرْضِ رَبَّنَا مَا خَلَقْتَ هَذَا بَطِلاً سُبْحَننَكَ فَقِنَا عَذَابَ ٱلنَّارِ ﴿

I would like first to thank my supervisors Prof. Dr. Hisham Haddara and Dr. Mohamed A. Dessouky for their continuous help and patience.

Dr. Mohamed was always giving me valuable advices that help me not only in my thesis, but also in my life.

I would like also to thank Dr. Ayman El-Sayed for his support, assistance, guidance, and encouragement.

Many thanks go to SWS family members for their continuous support, help, and valuable technical discussions during my thesis. Special thanks for Botros George, Ahmed Safwat, Yousr Maksoud, Ayman Osama, Mohamed Samir, Mohamed El-Kholy, Mohamed El-Badry, Nabil, Ahmed Kamal

I would like to thank my brothers, my wife, and even my little daughter Shaza. Their patience, care, and love are the light of my life.

Finally, I should give the true credit to his owners – after GOD almighty – My dear parents.

I should say that I wouldn't be what I'm now if you were not my parents, thank you for your care, patience, guidance, and unlimited support.

Thank you my dear mother, and may god bless your soul my dear father.

CONTENTS

LIST OF FIGURES	XVI
LIST OF TABLES	XIX
LIST OF SYMBOLS	XXI
LIST OF ABBREVIATIONS	XXIII
THESIS OBJECTIVE	XXV
CHAPTER 1: ANALOG TO DIGITAL CONVERTERS	1
1.1 ADC's TOPOLOGIES	2
1.1.1 Flash ADC	3
1.1.2 Folding and Interpolating ADC	5
1.1.2.1 Folding ADC	5
1.1.2.2 Interpolating ADC	6
1.1.3 Pipelined ADC	7
1.1.4 <u>Successive Approximation Register (SAR) ADC</u>	8
1.1.5 Delta – Sigma ADC	10
1.2 PERFORMANCE METRICS	12
1.2.1 Signal-to-Noise Ratio (SNR)	13
1.2.2 Spurious Free Dynamic Range (SFDR)	15
1.2.3 Total Harmonic Distortion (THD)	15
1.2.4 Signal-to-Noise and Distortion Ratio (SNDR)	16
1.2.5 <u>Effective Number Of Bits (ENOB)</u>	16
1.2.6 <u>F</u> igure <u>Of M</u> erit (FOM)	16
1.3 CONSIDERATION OF ADC IN DIGITAL TV RECEIVERS.	17
CHAPTER 2: PIPELINED ADC	19
2.1 THEORY OF OPERATION	20
2.2 DIGITAL FRROR CORRECTION	21

2.3	ARCHITECTURAL CHOICES	25
2.3.	1 Number of bits per stage	25
2.3	2 Reference Voltage Generation	26
2.3	3 Input Sample and Hold	27
СНАРТЕ	CR 3: PROPOSED SYSTEM- LEVEL DESIGN	19
3.1	SOURCES OF ERRORS	29
3.1.	l Multiplying DAC (MDAC)	29
3	.1.1.1 Capacitor Mismatch	30
3	.1.1.2 Sampling Capacitor Thermal Noise	34
3	.1.1.3 OTA Finite DC Gain	35
3	.1.1.4 OTA Finite Gain-Bandwidth (GBW) & Slew Rate (SR)	38
3	.1.1.5 OTA Noise	40
3.1	2 Sub-ADC	41
3	.1.2.1 Comparator Offset	41
3.1	3 Sampling Clock Jitter	43
3.2	NOISE BUDGET	43
СНАРТЕ	R 4: PROTOTYPE IMPLEMENTATION	46
4.1	ADC SPECIFICATIONS	46
4.2	SYSTEM DESIGN	47
4.3	CIRCUIT DESIGN	52
4.3.	1 2.5 bits/stage Stage Implementation	52
4	.3.1.1 MDAC Implementation	53
	4.3.1.1.1 OTA Implementation	55
	4.3.1.1.2 Finger Capacitors Implementation	57
4	.3.1.2 Sub-ADC Implementation	59
4.3	2 2 bits Flash ADC Implementation	62
4.3	3 Non-Overlapping Clock Implementation	63
4.3.	4 Digital Error Correction Implementation	66
4.4	SIMULATION RESULTS	67
4.5	PHYSICAL DESIGN	67
CHADTE	CR 5: EXPERIMANTAL RESULTS	19

REFERENCES74				
CONCL	USIONS & FUTURE WORK	73		
5.2	STATE-OF-THE-ART COMPARISON	71		
5.1	8 BITS ADC ON 180NM	69		