The effect of PUVA and NB UVB phototherapy on serum Osteopontin in psoriatic patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Dermatology, Andrology and Venereology

Presented by Eman El Sherbiny El Sayed M.B.B.Ch Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. Saleh Mohammed El Shiemy

Professor of Dermatology, Venereology and Andrology Faculty of Medicine, Ain Shams University

Prof. Dr. Mona Mohammed El Fangary

Professor of Dermatology, Venereology and Andrology Faculty of Medicine Misr University for Science and Technology

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and Drof. Dr. profound gratitude to**Mohammed El Shiemy**, Professor of Dermatology, Venereology and Andrology - Faculty of Medicine- Ain Shams University for his keen guidance, supervision, valuableadvice andcontinuousencouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Mona**Mohammed El Fangary, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, MUST University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Eman El Sherbiny El Sayed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Psoriasis	4
 Phototherapy 	28
Osteopontin	38
Subjects and Methods	52
Results	57
Discussion	68
Summary	76
Conclusion	78
Recommendations	79
References	80
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	List of drugs that may aggravate expsoriasis or induce it	-
Table (2):	Summary of Different subsets of T and related cytokines involved in pse pathogenesis	oriasis
Table (3):	Descriptive statistics of the subjects	
Table (4):	Comparative statistics of Osteopentin level in Psoriasis pa versus the Healthy control	atients
Table (5):	Descriptive statistics of Psoriasis s subgroups	
Table (6):	Comparative analysis of basal Osteopontin levels in different risk f for Psoriasis patients	factors
Table (7):	Correlation analysis between treatment strategies and Osteo levels before and after treatment	pontin
Table (8):	Comparison between Psoriasis patreated by NBUV and PUVA ir changes of Osteopontin serum level	n fold

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Schema for the initiation of a pso- skin lesion		17
Figure (2):	Schema of the contribution of T subsets to the pathogenesis of psorias		20
Figure (3):	Comorbidities in psoriasis		23
Figure (4):	Hypothetical model of the immunole interplay between the pso inflammatory process and adipocytes	riatic	25
Figure (5):	Structure of the OPN protein		41
Figure (6):	Generation of sOPN and iOPN molecular structure of sOPN		42
Figure (7):	OPN mediates innate-adaptive imcrosstalk		45
Figure (8):	Levels of osteopontin protein express. Psoriasis patients versus the he control group	althy	58
Figure (9):	Distribution of the different chole risk factors among the both treat groups of psoriasis patients.	ment	60
Figure (10):	Distribution of different hypergly risk groups among the both pso groups	riasis	60
Figure (11):	Basal serum Osteopontin levels a both subgroups of BMI	mong	
Figure (12):	Correlation between Osteopontin (ug/L) and PASI score in Pso patients	riasis	62

List of Figures

Fig. No.	Title	Page No.
Figure (13):	Correlation between basal and treatment serum Osteopontin leve Psoriasis patients	els in
Figure (14):	Correlation between basal and treatment serum Osteopontin level Psoriasis patients treated with NB-U	els in
Figure (15):	Correlation between basal and treatment serum Osteopontin level Psoriasis patients treated with PUVA	els in
Figure (16):	Comparison between the basal so Osteopontin levels in Psoriasis partreated by NB-UVB versus PUVA	tients
Figure (17):	Comparison between the post-treat serum Osteopontin levels in Pso patients treated by NB-UVB versus F	riasis

List of Abbreviations

Abb.	Full term
<i>AMP</i>	.Antimicrobial peptide
	Antigen-presenting cells
	Body mass index
	. Body surface area
	. Coronary artery disease
	. CC chemokine ligand 20
	. Calcitonin gene-related peptide
CLA	. Cutaneous lymphocyte antigen
<i>CRP</i>	. C-reactive protein
CTCL	. Cutaneous T-cell lymphoma
DCs	. Dendritic cells
<i>DM</i>	. Diabetes mellitus
dWAT	.Dermal white adipose tissue
<i>ECM</i>	. Extracellular matrix
ELISA	.Enzyme linked immunosorobent assay
<i>GM-CSF</i>	. Granulocyte-macrophage colony stimulating factor
HRD	. Heparin binding domains
	.Heparin omaing aomains .Human β-defensin
	.Human B defensing 3
	.High-density lipoprotein
	.Human leukocyte antigen
	. Heparin sulfate proteoglycans
<i>IFN</i>	
<i>IFN-γ</i>	•
<i>IL</i>	
	Innate lymphoid cells
	.Inducible nitric oxide synthase
	.Intracellular iOPN

List of Abbreviations (Cont...)

Abb.	Full term
<i>IRF7</i>	Interferon regulatory factor 7
KCs	Ke ratin o cytes
LCE3B	$ Late\ cornified\ envelope\ 3B$
LCE3C1	Late cornified envelope 3C1
<i>LCs</i>	Langerhans cells
<i>LDL</i>	Low-density lipoprotein
<i>LFA-1</i>	$ Lymphocyte\ function-associated\ antigen-1$
Mas	Mono adducts
mDCs	Myeloid dendritic cells
<i>MED</i>	Minimal erythema dose
<i>MHC I</i>	$ Major\ histocompatibility\ complex\ class\ I$
	molecules
MHC II	Major histocompatibility complex class II molecules
MI	Myocardial infarction
<i>MMPs</i>	Metalloproteinases
<i>NK</i>	Natural killer
<i>OPN</i>	Osteopont in
ox-LDL	$Oxidized\;LDL$
<i>PASI</i>	Psoriasis area and severity index
pDCs	Plasmacytoid dendritic cells
<i>PRL</i>	Prolactin
<i>PSORS1</i>	Psoriasis susceptibility 1
<i>PSORS9</i>	Psoriasis susceptibility 9
<i>RGD</i>	Arginine-glycine-aspartic acid binding
CD	sequence
	Standard deviation Smooth muscle cells
sOPN	
SUFIV	Betteted UFIV

List of Abbreviations (Cont...)

Abb.	Full term
<i>SP</i>	$Substance\ P$
SVVYGLR	Serine, valine, valine, tyrosine, glycine, leucine, arginine
sWAT	Subcutaneous white adipose tissue
TGF - β	Tumor growth factor
Th	T $helper$
<i>TLR</i>	$Toll\mbox{-}like\ receptor$
TNF - α	Tumor necrosis factor
TNF - α	Tumor necrosis factor alpha
<i>Treg</i>	T regulatory cell
UV	Ultra violet
<i>VIP</i>	Vasoactiveintestinal peptide
<i>VLDL</i>	Very low-density lipoprotein
<i>WC</i>	Waist circumference

Introduction

soriasis is a chronic inflammatory disease that occurs in about 0.1% - 3% of the population (*Park and Lee, 2010*). It is characterized by an immune-related pathogenesis, a genetic background which may be triggered by several environmental factors including smoking and infections (*Mercuri and Naldi, 2010*) leading to a T cell-mediated cytokine production that drives hyper proliferation and abnormal differentiation of keratinocytes (*Park and Lee, 2010*).

Osteopontin (OPN) is a multifunctional glycophosphoprotein secreted by many cell types, including osteoblasts, lymphocytes, macrophages, epithelial cells and vascular smooth muscle cells. It has been implicated in numerous physiologic and pathologic events including cell survival, cell mediated immunity and inflammation (*Chen et al.*, 2009).

It has been demonstrated that OPN modulates inflammatory processes involved in psoriasis, which is the most prevalent T-cell mediated inflammatory disease in humans through its action as chemotactic factor, supporting the adhesion and modulating the function of T cells and monocytes/macrophages (*Bummino et al.*, 2009).

Osteopontin acts as a mediator involved mainly in inflammation and tissue remodeling, yet it has become apparent that it may exert important cardiovascular effect as well. High

circulating OPN levels have been reported in several inflammatory diseases, including multiple sclerosis, lupus erythematosis, rheumatoid arthritis and in psoriasis (*Chen et al.*, 2009).

Management of psoriasis includes topical therapy, ultraviolet light (phototherapy), systemic agents and biological treatments. Phototherapy is an essential therapeutic option for patients with psoriasis and has been used for more than 75 years. The most commonly used types of phototherapy are photochemotherapy using psoralen ultraviolet A (PUVA) and Narrow band ultraviolet B (NB-UVB) therapy (*Jensen et al.*, 2010).

AIM OF THE WORK

Stimation of serum OPN level in patients with psoriasis vulgaris and evaluation of the effect of PUVA and NB UVB phototherapy on serum OPN level after treatment.

Chapter 1

PSORIASIS

soriasis is a chronic, immune-mediated inflammatory skin disease that is associated with multiple comorbidities. It affects 2% of the Western population, with varying prevalence among different ethnic groups (*Reich*, 2012).

I- Epidemiology of Psoriasis:

a) Incidence:

Psoriasis represents a significant public heath challenge, affecting approximately 125 million people globally. Prevalence estimates within adult populations range from 0.91% in the U.S.A. to 8.5% in Norway (*Griffths et al.*, 2017).

b) Age & sex:

Psoriasis can begin at any age. Late - onset psoriasis (diagnosed > 40 years of age) shows little difference in distribution between males and females. However, early onset psoriasis showed clear differences with females being more likely to be diagnosed with psoriasis at an earlier age (*Springate et al.*, 2017).

Psoriasis that starts in childhood has high family incidence and the earlier the onset, the worse the prognosis (*Romiti et al.*, 2009). Studies with twins have shown affection of monozygotic twins up to 70% probability that the other will

be affected, too and only a 20% probability for dizygotic twins (*Witte and Sabat, 2015*).

II- Diagnosis of Psoriasis:

The diagnosis of psoriasis is primarily clinical and a skin biopsy is usually not necessary for classic presentations of the disease. It's characterized clinically by erythematous scaly lesions and pathologically by hyperproliferation of epidermal keratinocytes with resulting hyperkeratosis, infiltration of lymphocytes, and angiogenesis (*Mercuri and Naldi*, 2010).

Clinical Variants:

Chronic plaque psoriasis is the most common variant of psoriasis vulgaris. The characteristic lesions are sharply demarcated, scaly, erythematous plaques. The plaques may be pruritic and/or painful. They can be ovoid, round, or irregular in morphology and are often symmetrically distributed. When the xerotic scale is removed with scraping, points of fine bleeding may be seen (Auspitz sign). Lesions may develop at sites of trauma or injury, known as the Koebner phenomenon. The plaques are predominantly located on the elbows, knees, lower back, umbilicus, hands and feet but can occur anywhere on the body (Whan et al., 2017).

Guttate psoriasis appears particularly in children and young adults after acute streptococcal infections. Lesions are rounded or slightely oval varing from 2mm-1cm in diameter &